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Abstract
Heterogeneity is a growing concern for scheduling on
the cloud. Hardware is increasingly heterogeneous (e.g.,
GPUs, FPGAs, diverse I/O devices), emphasizing the
need to build schedulers that identify the internal struc-
ture of applications and utilize available hardware re-
sources to their full potential. In this paper we present
our initial efforts to build a scheduler that tackles het-
erogeneity (in hardware and in software) as a primary
concern. Our scheduler, HCl (Heterogeneous Cluster),
models applications as annotated directed acyclic graphs
(DAGs), where each node represents a task. It maps tasks
onto hardware nodes, also organized in DAGs. Initial re-
sults using application models based on TPC-DS queries
running on Apache Spark show that HCl can improve
significantly upon approaches that do not consider het-
erogeneity and generate schedules that approach the crit-
ical path in length.

1 Introduction
Cloud computing enables execution of large-scale dis-
tributed applications in datacenters comprising tens or
hundreds of thousands of machines [9]. One problem
that has drawn significant research effort over the last
years is scheduling: how to allocate hardware resources
to these applications [11,15,17,19,20,22,24,38,46–48].

Many cloud schedulers have been built under the as-
sumption of hardware homogeneity, but there is an in-
creasing need to support heterogeneity in terms of both
hardware and software. Hardware is increasingly di-
verse. Modern datacenters include different types of
hardware (cores, memory), accelerators such as GPUs
[1,3] and FPGAs [8], or specialized hardware extensions
(e.g., Intel’s SGX [27]). Software running in the cloud is,
also, heterogeneous. The cloud is used by applications
with varying size, execution time, and latency require-
ments [20,22,46–48]. At the same time, many distributed
applications consist of parts with different resource re-
quirements [19] and different behavior.

Most of the existing schedulers either assume a ho-
mogeneous environment, or deal with heterogeneity in a
limited matter (we expand on this in §5). As heterogene-
ity increases, both hardware and software heterogene-
ity need to be considered when making scheduling de-
cisions. Doing this requires removing assumptions about
the hardware and applications from the scheduler, exter-
nalize them, and provide them as input to the scheduling
algorithm.

The challenge, as with most scheduling algorithms,
is to reach an attractive tradeoff between the overhead
of taking a decision, against the cost of making a sub-
optimal decision. In the presence of hardware and soft-
ware heterogeneity the latter increases, leading to a sig-
nificant amount of lost potential. At the same time, incor-
porating heterogeneity into the scheduling also increases
the scheduling overhead, since more factors need to be
considered.

In this paper, we take a first step and build a new
scheduler, called HCl, that takes an extreme approach
fully modeling heterogeneity. To that end, HCl oper-
ates on two annotated DAGs: one representing the appli-
cation, and one representing the available hardware re-
sources. Our goal is to investigate the potential benefits
of considering heterogeneity in scheduling, and, if they
prove significant, use it as a basis for building a sched-
uler that can be used in practice. We provide some back-
ground and extend on our motivation in §2. We describe
HCl in §3 and perform an initial evaluation in §4. We
discuss related work in §5 and conclude in §6.

2 Background and Motivation
The cloud aims to realize the concept of utility comput-
ing, i.e., provide an infrastructure that allows cloud users
to use computing resources on-demand, without owning
them. A primary goal of cloud computing is simplic-
ity. As such, a homogeneous cloud is preferable. There
are, however, several reasons that make supporting het-
erogeneity in the cloud important.



2.1 Hardware Heterogeneity

Processing Units As architects struggle to maintain
exponential performance improvements with each new
hardware generation, systems move towards heterogene-
ity [14], using specialized hardware such as GPUs and
FPGAs. Embracing heterogeneity is the only way to
maintain exponential performance improvements, result-
ing in them being increasingly adopted in datacenters.
Cloud providers such as Amazon and Softlayer already
offer GPU-accelerated (virtual) machines [1, 3]. More-
over, FPGAs are used for acceleration of network and ap-
plication functions in Microsoft datacenters [8]. Taking
this trend further, Google has built and deployed custom
ASICs for speeding machine learning applications [23].

Networks and Storage Networks are getting faster. 10
Gbit/s speeds are currently considered commodity, while
40 Gbit/s and even 100 Gbit/s with and without hard-
ware offloading are increasingly used [2]. Hence, it is not
unreasonable to expect datacenters that include multiple
generations of networking equipment. Storage is also in-
creasingly diverse. Flash-based SSDs, and HDDs offer
different trade-offs between performance and cost. Both
are extensively used in data centers [7, 30, 36] and of-
fered in public clouds. Furthermore, non-volatile mem-
ories [33] will increase heterogeneity. Moreover, fully
exploiting the capabilities of new IO devices depends
on accelerators that enable direct transfer from one de-
vice to another. One example is combining NVIDIA’s
GPUDirect technology with RDMA network interface
cards (NIC) [39] to allow direct access from a local GPU
or CPU to a remote GPU. Another one is NICs that pro-
vide offloads for storage protocols such as NVMe over
Fabrics [29].

Implications for Scheduling The shift towards hard-
ware heterogeneity creates additional challenges for
scheduling. Ignoring the diversity of hardware resources
is not an option, because their capabilities cannot be fully
exploited. In a heterogeneous setting, it is not enough for
the scheduler to answer how many resources of a given
type (e.g., cores for computation) will be allocated, it
also needs to determine the type and location of these
resources. This results in a significantly larger search
space and, therefore, a more complex problem. More-
over, application behavior changes depending on the type
and quantity of the resources it uses, which should be
factored in. Complicating things further, different ap-
plications have different capabilities to exploit hardware
[12, 13, 26, 50]. For example, some distributed applica-
tions can benefit from fast networks while others can-
not [28, 34, 44].

2.2 Software Heterogeneity
Applications as Dataflow Graphs The dominant pro-
gramming model in cloud systems is expressing appli-
cations as dataflow graphs. Distributed programming
frameworks such as MapReduce [10], Dryad [21], Spark
[49], Naiad [32], and others [4, 25, 40] aim to provide a
convenient way of writing distributed applications where
the programmer does not have worry about partitioning
the work, communication, fault-tolerance, and other de-
tails of distributed execution. One pattern that seems to
be emerging from these systems is that expressing pro-
grams as dataflow graphs, where nodes represent com-
putations and edges data dependencies between them, is
suitable for addressing these challenges. Fortunately, as
systems like Dandelion [35], TensorFlow [4], and oth-
ers [31] demonstrate, the dataflow programming model
provides a good basis for building distributed applica-
tions that utilize heterogeneous hardware.

Scheduling Dataflow Graphs The dataflow graph ab-
straction is not only useful for writing applications, but
also for executing them. Musketeer [16], for example,
uses a DAG of dataflow operators as a common inter-
mediate representation to decouple the front-end and the
back-end of distributed frameworks. Similar to other
works [18, 19, 42], HCl accepts the application DAG as
input to the scheduling algorithm.

Such a DAG representation exposes the heterogeneity
of applications, i.e., that different application parts have
different characteristics. A recent study [19] performs an
analysis on production DAGs, showing that they are in-
deed heterogeneous in terms of their structure, resource
demands, etc.

The heterogeneity of applications offers an opportu-
nity to improve scheduling efficiency by allocating re-
sources on a finer granularity than the whole application,
granting better control. This is particularly important for
heterogeneous hardware, so that the, potentially different
variants of, specialized hardware are better utilized.

3 The HCl Scheduler
In this section we discuss how HCl schedules heteroge-
neous applications on heterogeneous clusters. We in-
troduce the core concepts and the base algorithm, we
present an illustrating example, and conclude with a dis-
cussion on heuristics to reduce scheduling time.

3.1 Core Concepts
HCl is based on four core concepts that allow it to ad-
dress various aspects of the heterogeneous scheduling
problem.

Execution Cost Awareness Like other schedulers that
address resource heterogeneity [12, 13, 18, 45], HCl uses
task runtime estimations (such as in figure 1b) for each



resource to find the optimal mapping for a task, and esti-
mate future availability of resources.

t0 t1 t2

t3

t4

60 MB 60 MB

360MB
360MB

(a)

Task N0cpu N1cpu N1gpu

t0 4.0s 5.0s 2.0s

t1 4.0s 5.0s 2.0s

t2 8.0s 10.0s 5.0s

t3 1.0s 1.5s -

t4 1.0s 1.5s -

(b)

Figure 1: Example of a annotated DAG of a heteroge-
neous application. The edge labels in (a) represent the
I/O volume between two tasks and the table (b) shows
the runtimes of each task on the available resources.

I/O Cost Awareness I/O adds non-negligible over-
heads. Hence, similarly to other schedulers (e.g. Spark
[49]), HCl tries to minimize them. Therefore, the HCl
application model (Figure 1a) includes annotations about
the estimated I/O volume between related tasks, and the
resource graph (Figure 2) is annotated with the perfor-
mance characteristics of the (network or storage) I/O sys-
tem. Using this information, HCl weights the I/O and
execution costs against each other, preferring a remote
resource if the benefit from executing a child task on it
exceeds the I/O cost of transferring its input data there,
and a local resource otherwise.

1G1G
system

gpu

network
cpu

N0 N1

Figure 2: Example of a annotated graph for a heteroge-
neous cluster with two nodes, each with 2 CPUs. N1
additionally has one GPU while the N0 has faster CPUs.

Lookahead Scheduling HCl performs lookahead
scheduling [5,6], and operates on application DAGs (see
Figure 1a) that includes information such as parent/child
and sibling relationships of tasks. This enables HCl to
better understand the implications of its current decisions
onto future task schedules. In general, a locally optimal
schedule (i.e. for a single task) is not necessary glob-
ally optimal (i.e. for a parent task and its descendents).
Furthermore, lookahead scheduling allows HCl to fur-
ther optimize I/O costs by placing parent tasks closer to
their children’s optimal resource instead of only placing
child tasks closer to their parents (as done, e.g., in Spark).

Path Balancing Path balancing is enabled by looka-
head scheduling and means that HCl tries to balance the
execution times of converging paths in a DAG such that
the waiting time for tasks at convergence points is min-
imized. In other words, HCl tries to reduce the critical
path of the executed graph. As consequence, HCl might
not use a task’s preferred resource even if it is available,
if it determines that there is no benefit to the critical path
in using said resource. Therefore the preferred resource
(e.g. a fast CPU or GPU) is available for other applica-
tions (or parts of the same application) which can poten-
tially use it more beneficially.

3.2 Scheduling Algorithm
As discussed previously, HCl works on application and
resource graphs as well as runtime estimations of each
task on each resource. Upon submission of an appli-
cation (given as annotated DAG, such as in figure 1a),
tasks are grouped into levels according to their uprank
(i.e. the longest distance to an input task)1. Tasks on the
same level can can be executed concurrently and do not
have any data dependencies to each other. Once the ap-
plication tasks have been sorted by their uprank (level),
HCl performs an exhaustive search, i.e. it recursively
evaluates all possible combinations of task to node map-
pings in a depth-first fashion in order to find shortest path
through the search space considering task runtimes on
the selected resources as well as all I/O costs between
tasks in different levels. The shortest path represents
the optimal schedule for the application. A simplified
pseudo code of the basic algorithm is shown in Figure 3.

map(level, prev):

if (level > maxLevel): return 0

costs = execution_costs(this)

costs += io_costs(prev, this)

forall (tasks[level+1] -> resources):

next_costs = min(next_costs,

map(level+1, this))

return costs + next_costs

Figure 3: Pseudocode of the basic HCl algorithm

Using the application DAG and the task runtimes in
1 and the cluster in figure 2 as example, HCl would
first sort tasks t0, t1 and t2 into level 0, t3 into level 1
and t4 into level 2 and continue from there to find all
possible mappings of {t0, t1, t2} → {N0cpu,N1cpu,N1gpu}
and for each of those mappings recursively all mappings
for {t3} → {N0cpu,N1cpu} and {t4} → {N0cpu,N1cpu}.
For example, the schedule {t0→ N1gpu, t1→ N0cpu, t2→
N0cpu}, {t3 → N0cpu}, {t4 → N0cpu} is runtime optimal

1This corresponds to a as soon as possible (ASAP) strategy. A as
late as possible (ALAP) strategy would also be possible and we intend
to investigate this in future work.
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Figure 4: Globally optimal schedule for the application
(see 1a) on the cluster (see 2) as computed by HCl w.r.t.
to task runtimes (1b), I/O costs and task relations.

for each task (given that there is only a single GPU). Due
to its lookahead and path balancing feature, HCl notices
that assigning the GPU to t0 (or t1) does not allow t3 to
start any earlier than 4s because one of its parents can
never finish earlier than that. Instead HCl is uses the
GPU for t2 which reduces t2’s runtime to 5s.

Furthermore, HCl determines that the I/O volume be-
tween t3 and its parents (2×60MB) is much lower (≈
0.5s of network I/O) than between t3 and its child t4
(360MB) as well as the between t2 and t4 (360 MB),
each potentially inflicting about 3s of network I/O. Since
the benefits of t2 running on the GPU are very high and
moving t4 to the faster node N0 would also inflict 3s of
network I/O, HCl schedules t4 on N1 and with a simi-
lar reasoning t3 as well, despite their runtime being 0.5s
longer on N1 than on N0. The final is shown in figure 4.

3.2.1 Heuristics

The basic HCl algorithm described above is prohibitively
costly. We employ heuristics in order to reduce the com-
plexity, and enable using HCl in practice.

DAG Partitions We partition application DAGs into
sub-graphs with a limited depth ending in a convergence
point. The rationale behind this is that our predictions
are afflicted with a growing uncertainty further into the
future. Partitions are scheduled independently from each
other using the basic algorithim described above.

Node Equivalence Classes To reduce complexity we
handle identical nodes with pair-wise identical commu-
nication costs as a single resource. Within a node equiv-
alence class, we employ a simple greedy task execution
and I/O cost aware homogeneous scheduler.

Task Equivalence Classes distributed application
frameworks (DAFs) achieve a high level of concurrency
by partitioning data and spawning multiple tasks to per-
form the same operation independently. We sort all tasks
into buckets depending on the size of each partition and
treat all tasks within one bucket as equivalent.2

Limited Path Exploration Instead of exploring all
possible paths through the search space, we randomly se-
lect a limited number of paths at every level in the recur-

2Implementation of task equvalence classes is work in progress.

sion. This effectively limits the runtime of the schedul-
ing algorithm at the cost of introducing significant jitter
(as can seen at the error bars in Figure 5), hence we will
investigate more deterministic methods in future work.

4 Evaluation
In this section, we evaluate the benefits of the HCl model
when dealing with heterogeneity using our prototype im-
plementation. Our goal is twofold. First, to quantify
the potential benefits of HCl, and, second, to analyse
the effect of the lookahead in the behaviour of HCl. We
evaluate HCl with a subset of the TPC-DS [43] queries
that were executed unmodified using Apache Spark on a
single nodewhile limiting the number of executors such
that inter-task interference can be excluded. We then
extracted task dependencies and run-times as well as
I/O volumes for inter-task communication from Spark’s
event traces to build the application DAG for each query.

For our execution platform, we considered an 8-node
cluster with 6 slow and 2 fast nodes (×1.5 better perfor-
mance), a simple model for a cluster where accelerators
(e.g. GPUs, FPGAs, etc.) are, due to their cost and ap-
plicability, only available in a limited number of nodes.
We assume that all nodes are connected by a 1G Ethernet
network with a single switch.

We use two reference points. First, we compute the
total time for each task in the critical path of the DAG
ignoring any I/O data transfer times. This serves as a low
bound. Second, we use a hardware oblivious (homoge-
neous) greedy scheduler that attempts to distribute tasks
across all available resources. As a simple optimization,
it tries to schedule child tasks on the first available node
with the largest amount of local input data.

We execute each query multiple times to accomodate
for randomization (e.g., the order of tasks and nodes for
the H/W oblivious reference and the randomized limited
path exploration for HCl). For each task, we execute a
H/W oblvious schedule 10 times, and the HCl algorithm
4 times. For the latter, we use lookahead values from 0
to 4. We summarize the results in Figure 5 that depicts
the execution time of the each query as the percentage of
the critical path execution (i.e., our low bound).

Overall, the HCl scheduler improves the execution
time of most of the evaluated queries. On average, the
schedules computed by HCl are only 15% longer than
the critical path of the DAG and in some cases approach
it to less than 1%. In contrast to that, the H/W obliv-
ious scheduler computed schedules that are up to 61%
(48% on average) longer than the critical path. Further-
more, we observe diminishing benefits of a lookahead
larger than 1 in most cases. Whether this is a property
that holds for other applications is not clear and requires
further evaluation. There are also cases where a larger
lookahead value leads to a worse schedule. We attribute
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Figure 5: Execution time of different scheduling algorithms relative to the execution time of the critical path. All
values are mean values relative to the critical path length with min/max error bars.

this to the randomized limited path exploration but re-
quire further investigation to determine the cause for this
behavior with certainty.

5 Related work
A signifcant amount of research work tackling the prob-
lem of scheduling distributed applications on clusters.

Mesos [20] and YARN [46] are popular resource man-
agers with limited support for heterogeneity, only allow-
ing for annotating nodes with text labels (e.g., “GPU”),
leaving it to the application to implement the desired al-
location. Furthermore, they lack understanding of the
application structure and task dependencies.

Quincy [22] schedules tasks by solving a min-
cut/max-flow problem in a flow network that represents
the scheduler state (available tasks and resources). Fir-
mament [17] follows the same approach as Quincy, im-
proving scalability and flexibility (e.g., by allowing ar-
bitrary policies). Contrarily to HCl these works do not
exploit the application DAG. Firmament includes a pol-
icy framework that could be used to support heterogene-
ity [37], but we are not aware of any works that do so.

TetriSched [45] attempts to address scheduling hetero-
geneous tasks and resources by forming a Mixed Integer
Linear Programming (MILP) problem, and using a solver
to produce an optimal schedule. TetriSched, however, is
also DAG-oblivious, i.e., not aware of the task relations
in the application. It does plan ahead, however, to esti-
mate the future availability of resources.

Carbyne [18] is an altruistic scheduler, i.e. it relin-
quishes resources if they don’t reduce the application
runtime, thus allowing them to be used by other appli-
cations. Like HCl, it uses an application DAG as well as
resource quantity and duration requirement estimations
but it is resource and network heterogeneity oblivious.
The decicion space of Carbyne is therefore one dimen-
sional (time) and excludes the 2nd dimension (space), i.e.
the possibility to choose between different non-equal re-
sources alternatives.

Graphene [19] is DAG-aware and considers task de-
pendencies. However, contrarily to HCl, it assumes that
H/W resources are homogeneous. Graphene schedules
application tasks offline in a virtual space, scheduling
troublesome tasks first. An online component performs
global scheduling in a greedy manner.

Quasar [13] and Paragon [12] implement methods to
determine task runtimes on multiple resource types for
reocurring tasks (via short benchmarks), as well as un-
known tasks (via similarities with known tasks). HCl
also uses runtime estimations and the methods presented
in [12, 13] may be used to automatically gather this in-
formation. In contrast to HCl, these works use a greedy
task scheduling and are not aware of task relations.

HEFT [41], LHEFT [6] an PEFT [5] are DAG based
list schedulers that aim at reducing the makespan of
DAGs on heterogeneous hardware. LHEFT and PEFT
extend HEFT by employing lookahead scheduling strate-
gies similar to HCl but while they select resources for
tasks one task at a time, HCl does so on a per partition
basis, which enables path balancing. Moreover, HCl im-
plements a variety of heuristical methods to cope with
the inherent complexity of DAG scheduling.

6 Final words
Motivated by the emerging trends in the cloud, we pre-
sented HCl, a scheduler that attempts to tackle hetero-
geneity in hardware and software as a primary concern.
While our initial evaluation showed potential by produce
good schedules, there are limitations that render HCl im-
practical. There are two main challenges to make HCl
usable in practice. First, HCl needs to provide good
schedules in a reasonable time (sub-second) when deal-
ing with the amount of resources commonly found in
cloud datacenters. We are tackling this problem inves-
tigating proper heuristics to reduce the search time. Sec-
ond, for HCl to operate as a global scheduler it needs to
support global scheduling policies (e.g., fairness) among
different applications.



7 Discussion
The approach that we have chosen in HCl contains sev-
eral risk factors. First and foremost, the current base al-
gorithm is very time consuming and despite the fact that
we have implemented several heuristics and have yet to
implement others, there is a risk that the approach won’t
scale to relevant real-world sized clusters and workloads
without loosing the anticipated benefits that we could
show in this paper, hence the concept depends on the so-
lution of these related problems, which we expect would
also be one of the most controversial points about our
work.

To date, we have also only evaluated the potential ben-
efits for one class of applications (SQL) and it is not obvi-
ous what benefits our approach may have on other appli-
cation classes, such as distributed machine learning algo-
rithms. Furthermore, multi-application scheduling and
global policies are two important aspects that we have
not addressed yet.

Finally, we would be interested in learning about rele-
vant heterogeneous application classes that might be able
to benefit from the concepts used in HCl and further ideas
on how to reduce the complexity, e.g. by using more di-
rected partial path exploration techniques.
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