
Improving the Performance of the Symmetric
Sparse Matrix-Vector Multiplication in Multicore
Theodoros Gkountouvas∗, Vasileios Karakasis†, Kornilios Kourtis‡, Georgios Goumas† and Nectarios Koziris†

†School of Electrical and Computer Engineering
National Technical University of Athens, Greece
E-mail: {bkk,goumas,nkoziris}@cslab.ece.ntua.gr

∗Department of Computer Science
Cornell University, Ithaca, NY, USA

E-mail: tg294@cornell.edu

‡Department of Computer Science
ETH, Zurich, Switzerland

E-mail: kkourt@inf.ethz.ch

Abstract—Symmetric sparse matrices arise often in the solution
of sparse linear systems. Exploiting the non-zero element symme-
try in order to reduce the overall matrix size is very tempting for
optimizing the symmetric Sparse Matrix-Vector Multiplication
kernel (SpM×V) for multicore architectures. Despite being very
beneficial for the single-threaded execution, not storing the
upper or lower triangular part of a symmetric sparse matrix
complicates the multithreaded SpM×V version, since it introduces
an undesirable dependency on the output vector elements. The
most common approach for overcoming this problem is to use
local, per-thread vectors, which are reduced to the output vector
at the end of the computation. However, this reduction leads
to considerable memory traffic, limiting the scalability of the
symmetric SpM×V. In this paper, we take a two-step approach
in optimizing the symmetric SpM×V kernel. First, we introduce
the CSX-Sym variant of the highly compressed CSX format,
which exploits the non-zero element symmetry for compressing
further the input matrix. Second, we minimize the memory traffic
produced by the local vectors reduction phase by implementing a
non-zero indexing compression scheme that minimizes the local
data to be reduced. Our indexing scheme allowed the scaling of
symmetric SpM×V and provided a more than 2× performance
improvement over the baseline CSR implementation and 83.9%
over the typical symmetric SpM×V kernel. The CSX-Sym variant
has further increased the symmetric SpM×V performance by
43.4%. Finally, we evaluate the effect of our optimizations in the
context of the CG iterative method, where we achieve an 77.8%
acceleration of the overall solver.

Index Terms—Sparse Matrix Vector Multiplication, symmetric
sparse matrices, multicore optimization, compression, SpMV

I. INTRODUCTION

Sparse matrices are two-dimensional matrices primarily
populated with zeros. They are routinely used in the solution
of large linear systems as part of complex physical simulations
based on finite element methods. One of the most time-
consuming kernels in iterative solution methods for linear
systems is the Sparse Matrix-Vector Multiplication or SpM×V,
which computes the product of a sparse matrix with a dense
vector [1]. The SpM×V kernel has been characterized as one
of the most important computational kernels in science and
engineering at least for the current decade [2]. The algorithmic
characteristic that renders the study of SpM×V challenging
is its very low flop:byte ratio [3]–[5], which very often
translates to bottlenecks in the memory hierarchy. This adds
a significant overhead in the execution of SpM×V, especially

in multithreaded contexts, where the memory bandwidth is
shared among the cores, leading to poor scaling and mediocre
performance. Storage formats that compress the sparse matrix
representation are very common and provide an efficient way
of achieving performance gains in SpM×V. The most widely
used storage format is the Compressed Sparse Row or CSR
format [6]. The idea behind CSR is that it suffices to store only
the column indices of each non-zero element and ‘pointers’ to
the start of each row for locating each non-zero element of
the matrix.

In this paper, we focus on SpM×V for symmetric sparse ma-
trices, which comprise a large subcategory of sparse matrices
in real-life applications. Since SpM×V is bound from memory
bandwidth in most of the cases, it is tempting to store only
the lower triangular submatrix and its main diagonal, reducing
therefore the matrix size approximately to the half. This
format, known as Symmetric Sparse Skyline or SSS format [6],
can yield a significant performance improvement over the
typical CSR in a single-threaded execution. However, efficient
multithreaded implementations of CSR-derived symmetric for-
mats can be a hard task [7], [8]. The key problem in the
typical symmetric SpM×V implementation is a race condition
during the writing to the output vector, which can be resolved
either with locking (prohibitive cost) or with the use of local,
per-thread, output vectors [7], [9]. The use of local vectors
requires a final reduction step after the SpM×V operation is
complete, in order to reduce the local vectors to the final output
vector. This step can limit parallelism significantly, chiefly due
to the considerable increase in memory traffic1. The cost of
reduction, therefore, may easily outweigh the benefits of the
increased compression achieved by the exploitation of the non-
zero elements symmetry and poses severe restrictions to the
scalability of the kernel for a larger numbers of threads.

Our approach in optimizing the symmetric SpM×V kernel
consists of two steps. First, we introduce a variant of the
Compressed Sparse eXtended (CSX) [10] format that supports
symmetric sparse matrices; we name this variant CSX-Sym.
The CSX storage format is able to achieve high compression
levels by detecting and encoding a variety of different non-

1Theoretically, this step limits parallelism from Θ(NNZ) to Θ(N), but
since for sparse matrices N is adequately large, it is not a major problem in
practice.

zero element substructures (e.g., horizontal, diagonal, 2-D
block etc.), leading to considerable performance improve-
ments, while the CSX-Sym variant exploits also the non-
zero element symmetry, in order to achieve even higher
compression levels. Second, we introduce a non-zero indexing
compression scheme for the local vectors for minimizing
the memory traffic of the reduction phase of the symmetric
SpM×V. Our indexing scheme accumulates only the neces-
sary elements into the corresponding output vector elements;
given the high sparsity of the local vectors, the proposed
indexing scheme is able to eliminate the overhead of the
reduction phase, allowing the symmetric SpM×V to scale.
More specifically, the non-zero indexing scheme, when applied
to the typical SSS SpM×V implementation, is able to provide a
more than 2× performance improvement in SMP systems and
surpasses 40% in NUMA architectures. It also allows SpM×V
to scale, while the performance of the baseline SSS falls even
below CSR in highly multithreaded contexts. Additionally, the
aggressive compression of the input matrix achieved by CSX-
Sym format provides a further 43.4% and 10% improvement
in SMP and NUMA architectures, respectively. In summary,
the proposed symmetric SpM×V optimizations (CSX-Sym +
local vectors indexing) were able to provide a more than 2×
performance acceleration of the typical CSR implementation.
Finally, the integration of the CSX-Sym storage format into
a baseline non-preconditioned CG implementation yielded a
77.8% improvement of the total execution time of the solver
in an SMP system and 28.5% in a NUMA architecture.

The rest of the paper is organized as follows: Section II
provides background information about CSR, SSS, symmetric
SpM×V and CG. Section III presents the proposed technique
for optimizing the local vectors method in symmetric SpM×V,
Section IV presents the CSX-Sym variant of CSX and the
integration with the optimized local buffer implementation.
Section V presents the experimental performance evaluation,
as well as the impact of our optimizations on the performance
of the CG iterative method. Finally, Section VI discusses the
related work in the field of symmetric SpM×V optimization
and Section VII concludes the paper.

II. BACKGROUND

A. The CSR storage format

The most widely used storage format for sparse matrices
is the Compressed Sparse Row (CSR) format [6]. CSR uses
three arrays for storing a sparse matrix (Fig. 1): the values
array stores the values of the non-zero elements of the matrix
in row-wise order, the colind array stores the corresponding
column indices and rowptr contains ‘pointers’ to the start
of each row. Assuming four-byte indices for the rowptr and
colind arrays and double-precision floating point non-zero
values, the size of an N×N sparse matrix with NNZ non-zero
elements in the CSR format will be

SCSR = 12NNZ + 4(N + 1) (1)

The compression potential of CSR is rather limited, since it
only compresses the row representation. Moreover, in symmet-

5.4 1.1 0 0 0 0

0 6.3 0 7.7 0 8.2

0 0 1.2 0 3.1 0

0 0 4.2 0 0 0

9.0 0 0 0 2.4 0

1.5 0 2.9 3.6 0 0

A =

(0 2 5 7 8 10 13)rowptr:

(0 1 1 3 5 2 4 2 0 4 0 2 3)colind:
(5.4 1.1 6.3 7.7 8.2 1.2 3.1 4.2 9.0 2.4 1.5 2.9 3.6)values:

Fig. 1. The CSR sparse matrix storage format.

ric matrices almost half of CSR data is redundant, requiring
therefore more specialized formats that exploit the benefits of
non-zero elements symmetry.

B. The SSS storage format

Finite element methods usually involve the solution of large
linear systems with sparse, structured, symmetric matrices.
The most common approach for storing symmetric sparse
matrices are variations of the CSR format [6], [7], [11]–
[13], where only the non-zero elements of the upper or lower
triangular submatrix are stored, almost reducing to the half the
overall matrix size. The most established variation for storing
symmetric sparse matrices is the CSR-based Sparse Symmetric
Skyline (SSS) format [13] (Fig. 2). SSS stores the elements of
the main diagonal of the matrix separately in an N -size array,
called dvalues, and the remaining non-zero elements of the
lower triangular matrix using the standard CSR format. As a
result, the size of the values and colind arrays is reduced
to (NNZ − N)/2. The size of a symmetric matrix stored in
the SSS format is therefore given by the following equation:

SSSS = 6(NNZ + N) + 4 (2)

Assuming NNZ � N , which is a typical case for SpM×V
applications, the SSS format is able to half the matrix
representation size. This generous size reduction can yield
significant performance benefits in the serial execution of the
SpM×V kernel, but the nature of the symmetric SpM×V kernel
complicates the multithreaded execution, an issue we discuss
in more detail in Section III.

C. The Conjugate Gradient Method

The Conjugate Gradient method (CG) is an iterative algo-
rithm for the solution of linear systems of the form y = Ax,
where A is a symmetric positive definite coefficient matrix.
Originally proposed by Hestenes and Stiefel [14], its variations
have become the standard in the solution of large sparse linear
systems. Algorithm 1 shows a typical non-preconditioned CG
implementation. The key idea of the algorithm is to start
from an initial guess x0 of the system’s solution and proceed
by computing a new guess xi at each iteration, until the
residual vector ri = b − Axi becomes adequately small.

2.7 0.5 0 0 1.2 0 0 0

0.5 5.6 6.6 0 0 0 0 3.4

0 6.6 9.4 3.1 0 4.1 0 0

0 0 3.1 0.7 9.8 7.2 0 0

1.2 0 0 9.8 2.4 0 0 3.3

0 0 4.1 7.2 0 7.8 4.7 0

0 0 0 0 0 4.7 9.8 0

0 3.4 0 0 3.3 0 0 4.1

A =

(2.7 5.6 9.4 0.7 2.4 7.8 9.8 4.1)dvalues:

(0 0 1 2 3 5 7 8 10)rowptr:

(0 1 2 0 3 2 3 5 1 4)colind:
(0.5 6.6 3.1 1.2 9.8 4.1 7.2 4.7 3.4 3.3)values:

Fig. 2. The SSS symmetric sparse matrix storage format.

Theoretically, CG is guaranteed to converge after N iterations,
N being the size of the system [1]. In practice, however, the
calculation of residual vector starts to lose in accuracy, due to
roundoff errors, and convergence is not guaranteed eventually.
Therefore, CG can perform poorly in some matrices, while
in others it is able to provide a solution within i iterations,
i� N .

1: procedure CG (A, b, x0)
x0 : vector that is an initial approximate solution of A · x = b

2: r0 ← b−A · x0 . Residual vector
3: p0 ← r0
4: i← 0
5: loop
6: ai ← rTi ·ri

pT
i
·A·pi

. SpM×V operation
7: xi+1 ← xi + ai · pi . New approximate solution
8: ri+1 ← ri − ai · pi . Update residual
9: if ri+1 is adequately small then exit loop

10: bi ←
rTi+1 ·ri+1

rT
i
·ri

11: pi+1 ← ri+1 − bi · pi
12: i← i+ 1
13: return xi+1

Alg. 1: The Conjugate Gradient method algorithm.

During an iteration, the CG algorithm performs a series of
vector operations (dot products, additions etc.) and an SpM×V
product (Alg. 1, line 6). In the case of non-preconditioned CG
implementation for multicore architectures, the SpM×V opera-
tion tends to be the most expensive, taking up the majority of
the CG execution time [1], [15]. In the case of a preconditioned
CG implementation, the preconditioning process can be quite
expensive, depending on the exact preconditioner used, while
in highly parallel distributed implementation, the dot products
become also quite significant. In this paper, we focus on a
simple, non-preconditioned CG implementation as a baseline
iterative method for solving linear systems in multicores, since
improving the performance of a preconditioner is orthogonal

to the SpM×V optimization examined in this paper.

III. THE REDUCTION PHASE OF THE SYMMETRIC SPM×V

The serial version of the symmetric SpM×V is straightfor-
ward and is described in Alg. 2. Iterating over the rows of
the matrix, we first compute the product of the corresponding
diagonal elements and then proceed with the computation of
the rest of the products in a CSR-like way. The important
difference from the simple CSR SpM×V is that we must also
compute the product of every symmetric element (Alg. 2,
line 7).

1: procedure SSSSPMVSERIAL(A, x, y)
A: N ×N symmetric sparse matrix in SSS format

2: for r ← 0 to N do
3: y[r]← dvalues[r] · x[r]
4: for j ← rowptr [r] to rowptr [r + 1] do
5: c← colind [j]
6: y[r]← y[r] + values[j] · x[c]
7: y[c]← y[c] + values[j] · x[r]
8: end for
9: end for

Alg. 2: Serial implementation of SpM×V using the SSS format.

A. Local Vectors Method

Since SpM×V is bound from memory bandwidth, storing
a symmetric matrix using a condensed format, like SSS, is
expected to lead to considerable performance improvement
over the conventional CSR storage for large matrices. Al-
though this is true for the serial version, the case of the
multithreaded version is more complicated. Similarly to CSR,
the input matrix in SSS is assigned to threads row-wise
ensuring an approximately equal number of non-zero elements
per partition (Fig. 3a). Unfortunately, the accesses to the output
vector are no more independent, since the calculations for the
upper triangular elements (Alg. 2, line 7) may write on output
vector elements assigned to other threads. These conflicts can
be avoided either with the use of locks or with the use of
local output vectors per thread. The cost of locks in such a
large extent would be prohibitive and serialize the accesses
on the output vector. The second option, however, is more
viable, since the accesses in the local output buffers can be
performed independently. Nonetheless, an additional reduction
step must be performed to compute the final output vector
from the local vectors partial results (Fig. 3b). This reduction
step can be easily performed in parallel, thus reducing the
additional overhead.

Algorithm 3 shows the multithreaded SpM×V implementa-
tion using the SSS format. Each thread performs the SpM×V
operation for its own partition writing the result in its local
output vector. At a second phase (lines 12–15), the local
buffers are reduced to the output vector in parallel. During this
phase, the output vector and the local buffers are split equally
row-wise and each thread is responsible for the reduction of
its corresponding part of the output vector.

2.7 0.5 0 0 1.2 0 0 0

0.5 5.6 6.6 0 0 0 0 3.4

0 6.6 9.4 3.1 0 4.1 0 0

0 0 3.1 0.7 9.8 7.2 0 0

1.2 0 0 9.8 2.4 0 0 3.3

0 0 4.1 7.2 0 7.8 4.7 0

0 0 0 0 0 4.7 9.8 0

0 3.4 0 0 3.3 0 0 4.1

(a) Sample matrix.

y = + + +

y1 y2 y3 y4

(b) Naive.

y = + + +

y y2 y3 y4

(c) Effective ranges.

y = + + +

map

y y2 y3 y4

0 1 2 2 3 4

(d) Indexed.

Fig. 3. Local vector methods for the reduction phase of the symmetric SpM×V kernel. An example implementation of symmetric SpM×V with p = 4
threads. The naive method (b) uses simply four local buffers that reduces later to the final output vector. The effective ranges method (c) uses p − 1 local
vectors writing only the possibly conflicting regions. The indexing scheme proposed 3d uses p − 1 local vectors and an indexing structure that points only
to the really conflicting elements.

1: procedure SSSSPMV(A, x, y, n, start [n], end [n])
A: N ×N symmetric sparse matrix in SSS format
n: number of threads utilized
start [n], end [n]: region for each thread

2: for i← 0 to n do in parallel
3: for r ← start [i] to end [i] do
4: yi [r]← dvalues[r] · x [r]
5: for j ← rowptr [r] to rowptr [r + 1] do
6: c← colind [j]
7: yi [r]← yi [r] + values[j] · x [c]
8: yi [c]← yi [c] + values[j] · x [r]
9: end for

10: end for
11: end for
12: for r ← 0 to N do in parallel
13: for i← 0 to n do
14: y [r]← y [r] + yi [r]
15: end for
16: end for

Alg. 3: Multithreaded implementation of the symmetric SpM×V kernel using
the SSS storage format.

The reduction phase is seemingly memory bandwidth
bound. Assuming p participating processors and a symmetric
matrix of rank N , the reduction phase performs Θ(pN)
floating point operations for Θ(pN) memory accesses, leading
to Θ(1) flop:byte ratio. An important side-effect of the local
vectors method is that the working set of the symmetric
SpM×V increases linearly with the number of threads. Specif-
ically, assuming double precision values for the vectors, the
working set overhead will be

ws = 8pN (3)

For a small number of threads, the increase in the working set
introduced by the reduction phase will be insignificant, since
N � NNZ in most of the cases. However, as the number of
threads increases, the total size of the local vectors becomes
comparable to the matrix size, incurring a significant overhead

in the execution of the SpM×V kernel. It is crucial, therefore,
to reduce the working set overhead of the reduction phase, in
order to allow SpM×V to scale beyond a certain number of
threads.

B. Effective ranges of local vectors

The naive local vectors reduction method is suboptimal,
since the full range of the output vector needs to be accessed
by every thread. The method of effective ranges, proposed
by Batista et al. [7], updates only a specific region of each
local vector and redirects the rest of updates directly to the
output vector. According to the symmetric SpM×V algorithm
(Alg. 3), the i-th thread is assigned the calculations for
the SSS submatrix between the start [i] and end [i] rows.
Since we store the lower triangular matrix, there is no way
for the thread i to access elements below the end [i] row
boundary. Therefore, it is safe to exclude this region from the
reduction phase. Furthermore, thread i can obtain access to the
output vector between the start [i] and end [i] elements directly
without ruining SpM×V consistency, exactly as in the regular
unsymmetric SpM×V implementation. The SpM×V operations
at the remaining region, from the first row up to start [i],
may conflict with the output vector updates and, therefore,
the algorithm must write to the local vector; this region is
the effective region of the local vector (Fig. 3c) and should be
updated during the reduction phase. Assuming, without loss of
generality, that each thread obtains almost the same number
of rows, the working set overhead of the reduction phase for
this method using p threads can be calculated as follows:

wseff ≈ 8
p(p− 1)

2
· N
p

= 4(p− 1)N (4)

The reduction overhead is now halved compared to the naive
version, but the key problem of the symmetric SpM×V execu-
tion remains: the overhead of the reduction phase still grows
linearly with the number of participating threads.

1 2 4 8 16 32 64 128 256

Threads

2

5

10

20

40

A
v
e
ra

g
e
 D

e
n
s
it
y
 (

%
)

Fig. 4. The density of the effective regions of local vectors. Local vectors
become more sparse as the thread count increases, reaching a 2.7% density
at 256 threads. The vertical line marks the density at the 24 threads of the
Dunnington system.

C. Local vectors indexing

Our approach on minimizing the reduction phase overhead
is based on the observation that the effective regions of the
local vectors are quite sparse, i.e., very few elements of
the effective regions are actually updated during the SpM×V
computation. Another interesting trait of the effective regions,
as depicted in Fig. 4, is that their density is continuously
decreasing as more threads are added to the SpM×V com-
putation, reaching an average of 10.7% at the 24 threads of
our Dunnington system and 2.6% at 256 threads.

Motivated by this behavior, we introduce an indexing
scheme for the non-zero elements of the local vectors, in order
to update only the conflicting elements during the reduction
phase, minimizing the workload overhead. For each non-zero
element in the effective regions of the local vectors (Fig. 3d),
we keep a pair (vid , idx), where vid is a unique local vector
ID and idx is the index of the non-zero element inside the local
vector. The size of idx equals the matrix index size, i.e., four-
bytes, while vid can vary depending on the maximum expected
thread count. In our implementation, we use generously four
bytes for the vid field, but two or even a single byte is enough
for current multicore architectures.

The workload overhead of the reduction phase using our
indexing scheme is now dependent on the density d of the
effective regions of the local vectors. More specifically, as-
suming, without loss of generality, that the N matrix rows are
equally partitioned among p threads, the working set overhead
is

ws idx = wseffd + 8
(p− 1)Nd

2︸ ︷︷ ︸
index size

(5)

≈ 8(p− 1)Nd (6)

Although, theoretically, the local vectors indexing does not
decouple the reduction phase overhead from the thread count,
in practice, the effect of the thread count increase is consider-
ably attenuated. This is due to the inverse relation between the
thread count and the density of the effective regions, which
eventually tends to stabilize the workload overhead as the

2 6 12 24

Number of Threads

0.02

0.05

0.1

0.2

0.5

1

2

R
e

d
u
c
ti
o

n
 W

o
rk

lo
a

d
 O

v
e

rh
e

a
d

naive
eff.ranges
nnz-indexing

Fig. 5. The workload overhead of the reduction phase (over the serial
SSS implementation) for the three local vectors methods considered. The
overhead of the indexing scheme proposed tends to stabilize as the thread
count increases.

thread count increases and is visually depicted in Fig. 5. The
reduction overhead of both the naive and the effective ranges
methods increases linearly with the thread count, exceeding
significantly the multiplication phase at the 24 threads. The
overhead of the indexing scheme proposed, on the other
hand, increases at a much slower pace and tends to stabilize
around 15% at the 24 threads. Indeed, with an average density
of almost 11% at this thread count, the indexing scheme’s
working set overhead is more than four times lower than the
case of the effective ranges.

Parallelization: The parallelization of the reduction phase
in our index-based scheme is based on the local vectors
index, since this specifies the actual reduction operations.
More specifically, we first sort the index in an ascending order
of the idx field and then split it equally among the participating
threads. The only restriction in the splitting process is that an
idx value must not be shared among any pair of threads, in
order to guarantee the independence of the updates to the final
output vector.

IV. EXTENDING CSX TO SYMMETRIC MATRICES

A. Overview of the CSX format

The Compressed Sparse eXtended (CSX) [10] storage for-
mat is a highly compressed storage format for sparse matrices
that is able to detect and encode multiple non-zero element
substructures simultaneously (Fig. 6). This allows CSX to
adapt to the specificities of each matrix and reach significant
compression levels. In conjunction with an efficient runtime
code generation, specifically tuned for SMP and NUMA
architectures, CSX is able to provide significant performance
improvements to the SpM×V kernel, exhibiting also a consid-
erable performance stability.

CSX uses only two arrays for representing a sparse matrix,
namely ctl and values, and discards both the rowptr and
colind data structures of the typical CSR representation. The
ctl data structure (Fig. 7) stores all the necessary metadata,
while the values array contains the non-zero elements ar-
ranged in a row-major substructure-wise order. A sparse matrix
in CSX is arranged in units. A CSX unit represents either a

d(2)

h(1) ad(1)

v(1)

bc(4,2)

bc(4,2)bc(3,2)

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

10

Fig. 6. Detection and encoding of non-zero elements substructures by CSX.

1 1 6 8
variable

int
variable

int

fixed
{8,16,32}

. . . fixed
{8,16,32}CTL

nr rjmp id size ujmp ucol deltas

Head Body

Fig. 7. The ctl byte-array used by CSX to encode the location information
of the non-zero elements of a sparse matrix. Optional fields are denoted with
a dotted bounding box.

substructure inside the sparse matrix (substructure unit) or a
sequence of column index delta distances represented by the
same number of bytes (delta unit). A CSX unit is comprised
of two parts: the head and the body. The head contains the
necessary information for denoting a new row (nr, rjmp and
ujmp fields) and the column index of the first element of
the unit, stored as a delta distance from the previous column
in a variable size integer. When encoding a substructure unit,
the body is empty. When encoding a delta unit, however, the
body contains a sequence of the delta distances of the unit. A
delta unit in CSX is a sequence of column indices that can be
represented by a specified number of bits (namely, 8, 16 or
32 bits). A detailed description and performance evaluation of
CSX can be found in [16].

B. CSX-Sym – Exploiting symmetry

CSX-Sym is the symmetric variant of the CSX format.
It detects and encodes non-zero element substructures just
as CSX, but only for the lower triangular part of the input
matrix; every substructure in the lower triangular submatrix
has a symmetric counterpart in the upper triangular one. For
example, a horizontal substructure at the lower half implies
also a vertical substructure with the same size and element
values starting at the symmetric position in the upper half.
Therefore, the description of the lower half substructures
suffices for describing precisely the whole matrix.

CSX-Sym, apart from the ctl and values arrays of the
typical CSX introduces a new array, dvalues, for storing the
elements of the main diagonal, similarly to the SSS format.
The only restriction we impose to CSX-Sym is that the writes
incurred by a symmetric substructure must not be directed
to both the local and the output vector. Such substructures
are ignored from CSX-Sym and not encoded at all. The
purpose of this restriction is to avoid the per-element check

✗

✓

2.7 0.5 3.1 0 1.2 0 0 0

0.5 5.6 6.6 0 0 9.8 0 0

3.1 6.6 9.4 5.4 0 4.1 0 0

0 0 5.4 0.7 0 7.2 0 0

1.2 0 0 0 2.4 1.9 4.6 3.3

0 9.8 4.1 7.2 1.9 7.8 4.7 3.4

0 0 0 0 4.6 4.7 9.8 0

0 0 0 0 3.3 3.4 0 4.1

A =

Fig. 8. Substructures encoded by CSX-Sym in an 8×8 matrix. The elements
of the upper triangular submatrix are not stored; thread partitions are denoted
with dotted lines. Legal substructures for CSX-Sym are marked with tick,
while illegal ones are marked with a cross.

TABLE I
THE MATRIX SUITE USED FOR THE EXPERIMENTAL EVALUATION. ALL

MATRICES ARE SQUARE AND POSITIVE DEFINITE. THE MAXIMUM
POSSIBLE COMPRESSION RATIO (C.R.) FOR SYMMETRIC FORMATS IS

DENOTED (NO INDEXING INFORMATION), ALONG WITH THE
COMPRESSION RATIO ACHIEVED BY CSX-SYM. AS A MATTER OF

REFERENCE THE SSS COMPRESSION RATIO DOES NOT EXCEED 50%.

Matrix Rows Nonzeros Size
(MiB)

C.R.
(CSX-
Sym)

C.R.
(Max.) Problem

parabolic fem 525,825 3,674,625 44.06 49.6% 63.6% C.F.D.
offshore 259,789 4,242,673 49.54 56.1% 65.3% E/M
consph 83,334 6,010,480 69.10 63.9% 66.4% F.E.M.
bmw7st 1 141,347 7,339,667 84.54 64.4% 66.2% Structural
G3 circuit 1,585,478 7,660,826 93.72 60.2% 62.4% Circuit
thermal2 1,228,045 8,580,313 102.88 53.4% 63.6% Thermal
bmwcra 1 148,770 10,644,002 122.38 65.1% 66.4% Structural

hood 220,542 10,768,436 124.08 64.4% 66.2% Structural
crankseg 2 63,838 14,148,858 162.16 64.9% 66.6% Structural
nd12k 36,000 14,220,946 162.88 64.9% 66.6% 2D/3D
inline 1 503,712 36,816,342 423.25 64.7% 66.4% Structural
ldoor 952,203 46,522,475 536.04 64.5% 66.2% Structural

of whether a multiplication must write to the output or to
the local vector. Figure 8 shows an example of the CSX-
Sym format. The highlighted horizontal substructure is not
selected for encoding, since its symmetric substructure crosses
the boundary of local and ‘remote’ writes. We should note here
that the local vector indexing optimization of the symmetric
SpM×V kernel is orthogonal to the CSX-Sym format.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

For the performance evaluation of the CSX-Sym format
and the local vectors indexing method, we have selected
12 matrices from the University of Florida Sparse Matrix
Collection [17]. We include large symmetric and positive
definite sparse matrices, in order for the CG method to be
applicable. Table I summarizes the main characteristics of
the matrices and presents the compression ratio achieved by
CSX-Sym (the working set overhead of the reduction phase
is not included). We use eight-byte double-precision floating
point numbers for the non-zero element values and four-byte
integers for the indexing information of the SSS format.

Our computational testbed comprises a quad-way six-core
SMP system (24 cores, Dunnington) and a two-way quad-core

TABLE II
EXPERIMENTAL PLATFORMS. THE NUMBERS FOR THE SUSTAINED
BANDWIDTH ARE OBTAINED WITH THE STREAM BENCHMARK.

Dunnington Gainestown

Model Intel Xeon X7460 Intel Xeon W5580
Microarchitecture Intel Core Intel Nehalem
Clock freq. 2.66 GHz 3.20 GHz
L1 cache (D/I) 32 KiB/32 KiB 32 KiB/32 KiB

L2 cache
3 MiB

(per 2 cores)
256 KiB

(per core)

L3 cache 16 MiB 8 MiB
Cores/Threads 6/6 4/8
Peak Front-end B/W 8.5 GB/s 2× 30 GB/s
Sustained B/W 5.4 GB/s 2× 15.5 GB/s

Multiprocessor Configurations

Processors 4 2
Cores/Threads (total) 24/24 8/16

NUMA system (8 cores, 16 threads, Gainestown). Table II
presents the technical characteristics of our platforms in more
detail. All systems were running a 64-bit version of the Linux
OS. We used LLVM 2.9 for all the considered formats, in order
to achieve a fair comparison. We should note here that beyond
our initial expectations, LLVM 2.9 offered an average 5%
performance improvement to the non-CSX2 formats compared
to GCC 4.5. For the parallelization of the SpM×V routines
and the preprocessing phase of CSX, we used explicit, native
threading with the Pthreads library (NPTL 2.7) and bound
the threads to specific logical processors using the Linux
kernel’s system call interface. Finally, for the NUMA-aware
implementations, we used the numactl library, version 2.0.7,
in conjunction with our low-level interleaved allocator [16].

In order to ensure a fair comparison, we have built a com-
mon measurements framework that interfaces with the storage
format implementations through a well-defined sparse matrix-
vector multiplication interface. We performed 128 consecutive
SpM×V operations with randomly created input vectors, swap-
ping the input and output vectors at every iteration.

Our performance evaluation is organized in four parts. First,
we evaluate the impact of local vectors indexing technique and
compare it with the naive and the effective ranges methods.
Second, we evaluate the performance of the CSX-Sym format
and compare to the optimized SSS version. Third, we examine
the behavior of the storage formats in reduced bandwidth
matrices, and, finally, we evaluate the impact of the proposed
optimizations in the CG iterative solver.

B. Performance of local vectors indexing method

The performance improvement achieved by the different
local vector methods considered is depicted in the speedup
diagrams of Fig. 9. All methods start with a significant
improvement in the single-threaded configuration, especially
in the Dunnington platform, but the naive and the effective
ranges methods scale at a lower rate compared to the baseline

2CSX routines are generated using LLVM by default.

CSR. The performance improvement offered by these meth-
ods is continuously shrinking as the thread count increases
and is completely eliminated when the memory bandwidth
is saturated. Due to its reduced working set overhead, the
effective ranges method exhibits a slightly better behavior in
such cases, but it still does not allow symmetric SpM×V to
scale. In Gainestown, the performance of the naive and the
effective ranges methods is very close to the original CSR at
the eight-threaded configuration and deteriorates significantly
at the 16-threaded.

The performance benefit of the proposed local vectors
indexing method is prominent in both considered architec-
tures. The considerably reduced working set overhead, which
remains almost stable with the thread count, allows sym-
metric SpM×V to scale at the same rate as the original
CSR implementation, without compromising the performance
improvement in the cases of memory bandwidth saturation.
More specifically, our indexing scheme achieves an 83.9% per-
formance gain over the best SSS configuration in Dunnington
(12 threads) and a 44% improvement in Gainestown. Overall,
the symmetric SSS kernel using the local vectors indexing
scheme was able to provide a more than 2× improvement over
the standard CSR implementation in Dunnington and 1.5×
in Gainestown in the multithreaded configurations. This is a
rather significant achievement, since the proposed technique
allows the efficient exploitation of the symmetric structure of
certain matrices, which otherwise would remain unexploited.

In order to provide more insight on the importance of the
reduction phase in the symmetric SpM×V implementation,
we present in Fig. 10 the execution time breakdown of the
symmetric SpM×V kernel for all the considered reduction
methods at the 24-threaded configuration in Dunnington. It
is clear that the proposed local vectors indexing scheme
reduces considerably the reduction phase overhead, keeping
it at a minimal level. This reduction method has a beneficial
side-effect: the multiplication phase has also decreased with
the proposed indexing scheme. This is mainly due to the
lower cache interference introduced by the modest working set
overhead of our method. The high working set overhead of the
alternative methods in many-threaded configurations is likely
to spill out useful data from the cache, incurring an increased
overhead to the multiplication phase of the next iteration.

Finally, it is essential to point the four cases (parabolic fem,
offshore, G3 circuit, thermal2) that CSR’s performance sur-
passes or reaches our indexing method. These matrices are
high-bandwidth matrices with a lot of their non-zero elements
lying at very long distances from the main diagonal, leading
to considerable memory traffic during the reduction phase.
However, the local vectors indexing method seems to handle
efficiently even such cases, exhibiting a rather low overhead,
while the naive and effective ranges methods are overwhelmed
by the reduction cost.

C. Evaluation of the CSX-Sym variant

The performance of the CSX-Sym variant and the opti-
mized SSS format (local vectors indexing) compared to the

1 2 6 12 24

Number of Threads

1

2

4

6

12

S
p

e
e

d
u

p
 o

v
e

r
s
e

ri
a

l
C

S
R

CSR
SSS naive
SSS eff.ranges
SSS indexed

(a) Dunnington

1 2 4 8 16

Number of Threads

1

2

4

6

S
p

e
e

d
u

p
 o

v
e

r
s
e

ri
a

l
C

S
R

CSR
SSS naive
SSS eff.ranges
SSS indexed

(b) Gainestown

Fig. 9. Symmetric SpM×V speedup with different local vectors reduction methods. The significant memory traffic incurred by the naive and the effective
ranges technique as the number of threads increases eliminates any benefit from the gain of the symmetric storage.

p
a
ra

b
o
lic

_
fe

m
o
ff
sh

o
re

co
n
sp

h
b
m

w
7
st

_
1

G
3
_
ci

rc
u
it

th
e
rm

a
l2

b
m

w
cr

a
_
1

h
o
o
d

cr
a
n
ks

e
g
_
2

n
d
1
2
k

in
lin

e
_
1

ld
o
o
r

0.01

0.1

1.0

T
im

e
 o

v
e
r

s
e
ri
a
l
C

S
R

CSR
SSS naive
SSS eff.ranges
SSS indexed

Fig. 10. Symmetric SpM×V execution time breakdown at 24 threads in
Dunnington. The reduction overhead (shaded regions) is considerably reduced
with the use of local vector indexing.

unsymmetric CSR and CSX implementations are depicted in
Fig. 11 (see next page). Thanks to its highly compressed rep-
resentation, CSX-Sym provides a 43.4% further performance
improvement over the optimized SSS format in Dunnington,
an architecture that is mostly affected by the matrix size
representation. In Gainestown, where the available memory
bandwidth is ample, the performance gap closes to 10% on
average, but CSX-Sym is still able to provide a performance
gain. The unsymmetric CSX and CSR implementations are
well below in performance, especially in Dunnington, where
the memory bottleneck is more prominent.

In order to gain a further insight in the CSX-Sym per-
formance, Fig. 12 shows the per-matrix performance of
the considered formats at the 16-threaded configuration in
Gainestown. CSX-Sym manages to achieve the best perfor-
mance, surpassing 10 Gflop/s, in 8 matrices from our suite.
The remaining four matrices are the high-bandwidth corner
cases, where no symmetric format did achieve performance
improvement over CSR. The reason behind this behavior is
that non-zero elements in matrices with a high bandwidth

p
a
ra

b
o
lic

_
fe

m
o
ff
sh

o
re

co
n
sp

h
b
m

w
7
st

_
1

G
3
_
ci

rc
u
it

th
e
rm

a
l2

b
m

w
cr

a
_
1

h
o
o
d

cr
a
n
ks

e
g
_
2

n
d
1
2
k

in
lin

e
_
1

ld
o
o
r

1

2

5

10

P
e

rf
o

rm
a

n
c
e

 i
n

 G
fl
o

p
/s

CSR
CSX
SSS indexed
CSX-Sym

Fig. 12. Per-matrix performance for the CSX-Sym format at 16 threads
in Gainestown. CSX-Sym’s performance in more regular matrices surpasses
10 Gflop/s, while staying close to baseline CSR performance in less regular
ones.

are often scattered across the whole matrix, leading to a
rather low substructure frequency. However, with the exception
of parabolic fem, which has a rather irregular structure and
very high bandwidth, CSX-Sym was able to achieve near-best
performance for almost all these corner-case matrices.

D. Evaluation in reduced bandwidth matrices

As depicted in Fig. 12, all symmetric SpM×V implementa-
tions exhibited poor performance in high bandwidth matrices.
The minimization of the matrix bandwidth has been exten-
sively studied in the past, in order to reduce the communication
overhead in distributed SpM×V implementations [18]–[20].
These techniques try to ‘bring’ the non-zero elements as close
as possible to the main diagonal of the matrix by applying
row and column permutations. This non-zero elements rear-
rangement can considerably benefit the multithreaded SpM×V
performance, and especially the symmetric kernel, for a num-
ber of reasons:

1 2 6 12 24

Number of Threads

1

2

4

8

16

S
p

e
e

d
u

p
 o

v
e

r
s
e

ri
a

l
C

S
R

CSR
CSX
SSS indexed
CSX-Sym

(a) Dunnington

1 2 4 8 16

Number of Threads

1

2

4

8

S
p
e
e
d
u
p
 o

v
e
r

s
e
ri
a
l
C

S
R

CSR
CSX
SSS indexed
CSX-Sym

(b) Gainestown

Fig. 11. Symmetric SpM×V speedup with the CSX-Sym format. All symmetric formats use the optimized local vector indexing method..

TABLE III
SPM×V PERFORMANCE IMPROVEMENT DUE TO MATRIX REORDERING

(RCM ALGORITHM).

Dunnington (24 threads) Gainestown (16 threads)

CSR 22.0% 11.1%
CSX 63.0% 14.0%
SSS 92.2% 43.6%
CSX-Sym 106.8% 48.5%

1) The access pattern in the input vector becomes more
regular minimizing possible cache misses.

2) The interference between the participating threads is
reduced, leading to a smaller index size for the local
vectors indexing method and, as a result, to lower
working set overhead.

3) The probability of CSX and CSX-Sym formats for
detecting and encoding more substructures is increased,
due to the larger concentration of the non-zero elements
in a specific matrix region (main diagonal).

This benefit of matrix reordering is depicted in Tab. III
depicts, where the average performance improvement of the
different SpM×V implementation due to matrix reordering
is reported. In Dunnington, the standard CSR gains a 22%
improvement, while baseline CSX is benefited by 63%. As
expected, the effect of matrix reordering in the symmetric
kernel is much more important, with the improvement of
SSS surpassing 90%, while CSX-Sym gets a more than 2×
acceleration. Similar is the picture in Gainestown, but both
the encountered improvements and the differences among
the different formats are attenuated. Such behavior is quite
typical in NUMA architectures, where the memory bandwidth
contention is not so intense as in SMP systems.

Figure 13, finally, shows the absolute SpM×V performance
in the reordered matrices of our suite. The performance of
the four matrices highlighted as corner cases in the previous
section is now considerably improved, though still not at the
level of the regular ones. This is mainly due to their increased
sparsity, which leads to considerable loop overheads due to
very short rows. Nonetheless, symmetric SpM×V is able to

p
a
ra

b
o
lic

_
fe

m
o
ff
sh

o
re

co
n
sp

h
b
m

w
7
st

_
1

G
3
_
ci

rc
u
it

th
e
rm

a
l2

b
m

w
cr

a
_
1

h
o
o
d

cr
a
n
ks

e
g
_
2

n
d
1
2
k

in
lin

e
_
1

ld
o
o
r

1

2

5

10

20

P
e

rf
o

rm
a

n
c
e

 i
n

 G
fl
o

p
/s

CSR
CSX
SSS indexed
CSX-Sym

Fig. 13. Per-matrix performance on reordered symmetric matrices
(Gainestown, 16 threads).

provide performance improvements, while CSX-Sym stays at
the top for the majority of the matrices, with a performance
surpassing 12 Gflop/s in six matrices (from bmwcra 1 to
ldoor).

E. Preprocessing cost of CSX-Sym

The detection and encoding of non-zero element substruc-
tures by CSX (and CSX-Sym as a result) entails a prepro-
cessing cost that must be paid during the construction of the
CSX matrix. However, thanks to a careful implementation
and the use of advanced matrix sampling techniques, the cost
of CSX preprocessing is rather contained [16]. Indeed, the
preprocessing cost in Dunnington and Gainestown, using 24
and 16 threads, respectively, amounts to 49 and 94 serial
SpM×V operations in CSR format on average, while these
numbers are slightly increased to 59 and 115 operations for
the set of reordered matrices, a rather expected increase, since
the serial SpM×V execution is considerably reduced in this
case. The higher numbers for Gainestown are due to the
more elaborate preprocessing in NUMA machines needed

p
a
ra

b
o
lic

_
fe

m
o
ff
sh

o
re

co
n
sp

h
b
m

w
7
st

_
1

G
3
_
ci

rc
u
it

th
e
rm

a
l2

b
m

w
cr

a
_
1

h
o
o
d

cr
a
n
ks

e
g
_
2

n
d
1
2
k

in
lin

e
_
1

ld
o
o
r

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e
 o

v
e

r
M

u
lt
it
h

re
a

d
e

d
 C

G
 (

C
S

R
)

CSR
CSX
SSS indexed
CSX-Sym

Fig. 14. CG execution time breakdown using 24 threads in Dunnington at
the RCM reordered matrices after 2048 iterations. [Execution time breakdown
legend – white: SpM×V, light gray: SpM×V reduction, dark gray: vector
operations, black: CSX/CSX-Sym preprocessing.]

for balancing the compression benefit and the decompression
overhead [16].

F. Impact on the CG iterative method

Figure 14 shows the execution time breakdown of the CG
method using the unsymmetric CSR and CSX formats and
their symmetric counterparts, SSS and CSX-Sym (both with
local vectors indexing). Results are shown at the 24 threads
in Dunnington for the RCM reordered matrices after 2048
iterations. The first generic observation is that the vector
operations can be quite significant in smaller and sparse
matrices, such as parabolic fem, offshore etc., and may exceed
50% of the overall execution time of the multithreaded CG
kernel. CG performs several vector operations, including dot
products, during an iteration (see Alg. 1), but only a single
SpM×V operation. For small matrices, therefore, that fit in
the aggregate cache, the overhead of vector operations can
easily dominate the total execution time of the solver. With
the exception of the very sparse parabolic fem and offshore
matrices, where the computation is dominated by the vector
operations, CG is greatly benefited by the symmetric storage
formats, encountering a more than 50% overall performance
improvement in large matrices. CSX-Sym is hindered by its
preprocessing cost in smaller matrices and offers similar or
lower performance the SSS format with the local vectors
indexing optimization technique. In larger matrices, however,
CSX-Sym compensates its preprocessing cost and manages to
offer a further performance improvement to the CG kernel.

VI. RELATED WORK

Research in sparse matrices has been active since the times
of the first computer systems. Early descriptions of the CSR
format go back in late 1960’s, where the CSR format was
described as a possible way of storing a sparse matrix [21].
One of the first and very revealing surveys on the indexing
structures of sparse matrices, dating back in 1973, is that of

Pooch and Nieder [12]. In this paper, the authors describe
a series of different indexing structures for sparse matrices,
referred to as row-column schemes, including the Coordinate
format, the CSR and BCSR, and also designate the use of
delta indexing of the column indices. The term Compressed
Sparse Row format or CSR was ‘standardized’ by Saad [6],
[13], who also coined the terms Coordinate format (COO)
and Blocked Sparse Row (BSR), later standardized as Blocked
Compressed Sparse Row (BCSR) by Im and Yelick [22],
[23]. Much reasearch has been conducted on BCSR and its
variations [24], including register and cache optimizations [22]
and auto-tuning [25], which culminated in the OSKI sparse
kernel library [26]. An interesting approach is the Compressed
Sparse Block (CSB) format proposed recently by Buluç et
al. [8], targeted at supporting efficiently both the Ax and
ATx operations. CSB divides the matrix into large sparse
square blocks, which are stored with the coordinate storage
scheme, but using small integers for the row and column
indices. The authors employ also task parallelism across the
different blocks. The authors extend their approach in sym-
metric matrices in [27]. The key idea is to use three different
local buffers to store results from the three innermost block
diagonals which cover the majority of non-zero elements in
most cases and store the rest of the results with the use of
atomic operations to guarantee safety, in the output buffer.
The key achievement is that the reduction phase will always
include only three vector additions, based on the assumption
that there is a small amount of non-zero elements outside
the three block diagonals that will trigger atomic operations.
However, in matrices with a relatively high bandwidth, this
method is expected to be bound by the atomic operations.

Another interesting technique for symmetric SpM×V is the
colorful method [7]. The main approach is to avoid completely
the reduction phase without using local vectors. More particu-
larly, they represent a sparse matrix as a graph where its nodes
are the rows and the edges are the conflicts between them. By
finding subgraphs without any connection, the authors divide
SpM×V into n tasks, where n is the number of subgraphs, and
each of these tasks can run in parallel. However, the geometry
of the graphs limits the potential of this approach and could
not achieve a performance gain over the typical local vectors
method.

VII. CONCLUSIONS

In this paper, we have presented a two-step approach for the
optimization of the symmetric SpM×V kernel. First, we extend
the highly compressed CSX format to support also symmetric
matrices and, second, we implement a local vectors indexing
scheme for reducing the memory traffic of the symmetric
SpM×V reduction phase. We have shown that our indexing
technique has significantly improved the symmetric SpM×V
performance compared to alternative local vector techniques.
In addition, by integrating CSX-Sym format we managed
a significant additional performance gain not only in SMP
architectures, but also in NUMA platforms, where the com-
putational part of the kernel is more prominent. Finally, the

performance advantage of the proposed techniques accelerated
significantly the performance of a typical CG implementation.

ACKNOWLEDGMENTS

This work was partly funded by the European Community’s
Seventh Framework Programme (FP7/2007–2013) under grant
agreement n° RI-261557 (PRACE1IP).

REFERENCES

[1] Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM, 2003.
[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,

K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The landscape of parallel computing research: A
view from Berkeley,” University of California, Berkeley, Tech. Rep.
UCB/EECS-2006-183, 2006.

[3] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris,
“Performance evaluation of the sparse matrix-vector multiplication on
modern architectures,” The Journal of Supercomputing, vol. 50, no. 1,
pp. 36–77, 2009.

[4] S. Williams, L. Oilker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms,” in Proceedings of the 2007 ACM/IEEE conference on
Supercomputing. Reno, NV, USA: ACM, 2007.

[5] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Communications
of the ACM – A Direct Path to Dependable Software, vol. 52, no. 4, pp.
65–76, Apr. 2009.

[6] Y. Saad, Numerical methods for large eigenvalue problems. Manchester
University Press ND, 1992.

[7] V. H. F. Batista, G. O. Ainsworth Jr., and F. L. B. Ribeiro, “Parallel
structurally-symmetric sparse matrix-vector products on multi-core pro-
cessors,” Computing Research Repository (CoRR), vol. abs/1003.0952,
2010.

[8] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks,” in Proceedings of the twenty-first
annual Symposium on Parallelism in Algorithms and Architectures
(SPAA’09). Calgary, Canada: ACM, 2009, pp. 233–244.

[9] R. Geus and S. Röllin, “Towards a fast parallel sparse matrix-vector
multiplication,” Parallel Computing, vol. 27, pp. 883–896, 2001.

[10] K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris, “CSX: An
extended compression format for SpMV on shared memory systems,”
in Proceedings of the 16th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming (PPoPP’11). San
Antonio, Texas, USA: ACM, 2011, pp. 247–256.

[11] A. Jennings, “A compact storage scheme for the solution of symmetric
linear simultaneous equations,” The Computer Journal, vol. 9, pp. 281–
285, 1966.

[12] U. W. Pooch and A. Nieder, “A survey of indexing techniques for sparse
matrices,” ACM Computing Surveys, vol. 5, pp. 109–133, 1973.

[13] Y. Saad, “SPARSKIT: A basic tool kit for sparse matrix computations,”
1994.

[14] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” Journal of Research of the National Bureau of
Standards, vol. 49, no. 6, pp. 409–436, 1952.

[15] M. Hoemmen, “Communication-avoiding Krylov subspace methods,”
Ph.D. dissertation, University of California, Berkeley, 2010.

[16] V. Karakasis, T. Gkountouvas, K. Kourtis, G. Goumas, and N. Koziris,
“An extended compression format for the optimization of sparse matrix-
vector multiplication,” IEEE Transaction on Parallel and Distributed
Systems, 2012, to appear.

[17] T. Davis and Y. Hu, “The university of Florida sparse matrix collection,”
ACM Transactions on Mathematical Software, vol. 38, pp. 1–25, 2011.

[18] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” in Proceedings of the 1969 24th National Conference. ACM,
1969.

[19] G. Karypis and V. Kumar, “METIS – Unstructured graph partitioning
and sparse matrix ordering system, version 2.0,” University of Mines-
sota, Department of Computer Science, Tech. Rep., 1995.

[20] U. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning-based de-
composition for parallel sparse-matrix vector multiplication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 10, no. 7, pp.
673–693, 1999.

[21] W. Tinney and J. Walker, “Direct solutions of sparse network equa-
tions by optimally ordered triangular factorization,” IEEE Proceedings,
vol. 55, no. 11, pp. 1801–1809, 1967.

[22] E.-J. Im and K. A. Yelick, “Optimizing sparse matrix computations
for register reuse in SPARSITY,” in Proceedings of the International
Conference on Computational Sciences – Part I. Springer-Verlag, 2001,
pp. 127–136.

[23] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization framework
for sparse matrix kernels,” International Journal of High Performance
Computing Applications, vol. 18, pp. 135–158, 2004.

[24] R. W. Vuduc and H.-J. Moon, “Fast sparse matrix-vector multiplication
by exploiting variable block structure,” in High Performance Computing
and Communications, ser. Lecture Notes in Computer Science, vol.
3726. Springer Berlin/Heidelberg, 2005, pp. 807–816.

[25] R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and
B. Lee, “Performance optimizations and bounds for sparse matrix-
vector multiply,” in Proceedings of the 2002 ACM/IEEE conference on
Supercomputing. Baltimore, MD, USA: IEEE Computer Society, 2002,
pp. 1–35.

[26] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library of auto-
matically tuned sparse matrix kernels,” Journal of Physics: Conference
Series, vol. 16, no. 521, 2005.

[27] A. Buluç, S. Williams, L. Oliker, and J. Demmel, “Reduced-bandwidth
multithreaded algorithms for sparse matrix-vector multiplication,” in
IEEE International Parallel & Distributed Processing Symposium. An-
chorage, AK, USA: IEEE Computer Society, 2011, pp. 721–733.

