
Mira: Sharing Resources for Distributed Analytics
at Small Timescales

Michael Kaufmann†‡, Kornilios Kourtis†, Adrian Schuepbach†, Martina Zitterbart‡
†IBM Research Zurich, ‡Karlsruhe Institute of Technology (KIT)

†Zurich, Switzerland ‡Karlsruhe, Germany
{kau,kou,dri}@zurich.ibm.com, zitterbart@kit.edu

Abstract— Modern distributed analytics stacks consist of
application frameworks that enable processing of large amounts
of data, and a resource manager that allows applications to share
computational resources. The initial use case for these systems
was running batch jobs with long lifetimes (e.g., a few hours),
but, since their inception, new use cases have emerged where
users increasingly use them to gain insight interactively, or even
online. Efficiently sharing resources under these additional use
cases, requires operating at smaller timescales (minutes or even
seconds) than the existing systems were designed for and are
capable of.

In this paper, we present Mira, a system for optimized
elastic execution of short-running and interactive data-analytics
applications with low-latency execution startup, fast resource
management and efficient resource utilization on shared clusters.
We analyze the resource sharing overheads in a commonly used
distributed processing stack (Spark+YARN) and reveal oppor-
tunities to accelerate applications in shared environments. Our
experiments show, that Mira is able to reduce resource sharing
related overheads by more than 400× and reduce application
runtime by up to 4.2×.

I. INTRODUCTION

Today’s distributed analytics are written in data-parallel
frameworks (e.g., MapReduce [7], Spark [41], Flink [6], etc.
[24], [28], [35], [36]), and executed in shared infrastructure
using resource managers such as YARN [39] or Mesos [17].
The existing ecosystem was initially developed to serve batch
applications that run for hours, typically executed overnight.
The wide adoption of the above systems resulted in additional
uses: performing interactive exploration of data, as well as
online processing [4], [6], [24], [35]. As a result, resource
managers are now required to manage resources at smaller
timescales than they were originally designed for: minutes
or even seconds. This happens for two reasons. First, some
applications take a few minutes or less, instead of hours,
to complete. Second, applications such as online analytics,
exhibit workload fluctuations that quickly change application
resource requirements.

Smaller time granularities pose a significant challenge for
existing systems (both resource managers and application
frameworks) that were not designed to manage resources
within seconds. To illustrate this, we consider a simple Spark

Source code, detailed test descriptions and experimental results will be
made available at https://github.com/zrlkau/mira.

0

30

60

90

120

0s 5s 10s 15s 20s 25s
time (seconds)

of

 ta
sk

s
/ e

xe
cs

task load acquired executors

(a) Spark+YARN

0

30

60

90

120

0s 5s 10s 15s 20s 25s
time (seconds)

of

 ta
sk

s
/ e

xe
cs

task load acquired executors

(b) Spark+Mira

0

30

60

90

120

0s 5s 10s 15s 20s 25s
time (seconds)

of

 ta
sk

s
/ e

xe
cs

task load acquired executors

(c) Spark+Mira (warm: executors are reused)

Fig. 1: Execution of a Spark application that spawns 110 tasks, each
of which sleep for 10 seconds.

application running on a YARN-managed cluster. The appli-
cation initially sleeps and spawns 110 tasks, each of which
sleeps for 10 seconds. Fig. 1a shows the demands of the
application (blue line) and the resources (task executors) that
were allocated to it (red line). Not only there is significant
delay in the application acquiring the resources it needs,
but there is also delay in releasing the resources after it is
done. While long running applications with little change in
load can amortize these costs, short running and interactive
applications, with highly fluctuating resource demands, cannot.
In this case, those costs dominate – or even exceed – the
application runtime.

To address the above issues, we present Mira, an effi-
cient execution environment that enables resource management
over small timescales (sub-seconds to seconds) for modern
distributed applications. Mira includes two parts: a resource

https://github.com/zrlkau/mira

Spark Flink AF

YARN, Mesos, Kubernetes, ...

Apps

Frameworks

Resource
Managers

Fig. 2: Applications execute on top of application frameworks (AFs)
that operate on a common computing infrastructure managed by a
resource manager (RM)

manager (RM) and an application scheduler (AS). The for-
mer manages all resources and applications, while the later
schedules the tasks of a single application and communicates
with the RM. We modified Spark to use Mira’s AS, instead of
its own scheduler (we believe our work is applicable in other
application frameworks, but we focus on Spark in this paper
because it is one of the most widely used frameworks).

Mira achieves efficiency in two ways. First, it treats execu-
tors not as ephemeral, but as long-lived, shared resources. This
allows it to minimize recurring acquisition costs and benefit
from warmed-up executors (e.g., JIT, caches), which further
improves efficiency as shown in Fig. 1c. Second, as conse-
quence of the minimized resource acquisition cost, Mira is able
to use a resource acquisition and release strategy that allows it
to respond to workload changes almost instantaneously, thus
improving application runtime as well as resource sharing ef-
ficiency. Overall, Mira overcomes prohibitive costs of existing
systems to quickly react to changes in resource demands.

We summarize our contributions below:
1) Using Spark applications running on top of YARN as an

illustrative example, we show and quantify the inability
of modern analytics stacks to operate at small timescales.

2) We present Mira, a two-level scheduling system for
efficient resource sharing that cuts down the resource
acquisition cost, and accelerates application execution via
reusing task executors. We integrate our approach into
Spark.

3) We evaluate Mira using TPC-DS queries running on top
of Spark, where Mira reduces average resource acqui-
sition time by a factor of 5.5× in a multi-application
scenario, unassigned and idle resources from 11.1% to
2.9%, and, finally, accelerates 75% of the queries by 2×
or more.

The remainder of this paper is structured as follows. First,
(II), using Spark+YARN as a representative analytics stack, we
analyze and quantify their overheads when managing resources
at small timescales. Next, we describe how Mira addresses
these issues (III), and perform an experimental evaluation (IV).
Finally, we discuss related work (V) and conclude (VI).

II. BACKGROUND AND MOTIVATION

Most distributed applications are written in application
frameworks (AFs) such as Apache Spark [41], Flink [6],
and others [1], [29], [36]. Users write their program using
high level operations (e.g., map/reduce), while the AF handles
distributed execution: data distribution, task scheduling, faults,

etc. Commonly, as shown in Fig. 2, these applications are
executed on a shared computing infrastructure that is managed
by a resource manager (RM) such as YARN [39], Mesos [17],
or others [5], [11], [19], [30], [40]. Generally, there are three
approaches in how AFs and RMs collaborate, depending on
who controls resources, and for how long.

1) In fine-grained resource allocation, used in Hadoop
MapReduce [16], earlier versions of Spark [41] and others
[17], control over resources stays with the RM at all
times. For each application task, the RM allocates suitable
resources, executes a task on behalf of the AF and
releases the resources afterwards. The RM has full insight
into the utilization of each resource and can share them
among multiple applications. However, this comes at the
cost of high task execution overhead, due to resource
allocation and release per task, which can be prohibitive
for short-running tasks.

2) In static coarse-grained resource allocation, used by
Spark [41], Flink [6] and others [4], [35], a set of
resources is statically allocated to an application and the
AF assumes control over them for the entire duration
of the application execution. An AF scheduler schedules
individual (micro-)tasks onto the allocated resources. This
eliminates the high task execution overhead, as resource
allocation costs can be amortized across several tasks,
thus enabling low-overhead, low-latency task execution.
However, as the RM relinquishes control over these
resources, it has no insight into their utilization and
cannot share them with other applications, even if the
owning application does not use them at all times. Conse-
quentially, coarse-grained resource allocation is ill-suited
for shared environments.

3) Dynamic coarse-grained resource allocation mode allows
elastic expansion and contraction of the resources allo-
cated to AF. Many systems support or plan to support
this (e.g., Spark [32], Flink [10], and others [29], [34]).
As load increases, the AF scheduler may request further
resources from the RM and release them once the load
has decreased. As in coarse-grained mode, resource allo-
cation costs can be amortized across multiple tasks, thus
enabling low overhead execution of tasks on allocated
resources. While the RM still has no insight into resource
utilization, it will regain control earlier, given a coop-
erative AF or use of preemption techniques, therefore
supporting resource sharing.

Architecturally, dynamic coarse-grained resource allocation
provides a good trade-off between execution overheads and
efficient resource sharing. Nevertheless, because existing sys-
tems are not built for small timescales, they are unable to
effectively use this mode of scheduling for applications with
short durations or fluctuation in resource demands. Specif-
ically, we identify two main issues. First, the fundamental
resource allocation operations take a long time, placing an
upper bound on resource sharing efficiency. Second, because
resource acquisition takes too long, AFs hold on to resources

long after load has decreased, further hurting efficiency. Both
issues have significant impact on interactive applications with
low response time requirements as well as applications with
highly fluctuating resource demands as both need to acquire
and release resources frequently and quickly. Problems get
exacerbated in high-load scenarios with resource shortage. In
the next paragraphs, we examine and quantify these issues on
common setup, using Spark as the AF and YARN as the RM.

A. Resource Allocation Costs

0
2500
5000
7500

10000
12500
15000

0 10 20 30 40 50 60 70 80 90 100 110
of executors to be allocated

ac
qu

is
iti

on
 d

el
ay

 (
m

s)

first 25% 50% 75% last

(a) Spark+YARN

0
2500
5000
7500

10000
12500
15000

0 10 20 30 40 50 60 70 80 90 100 110
of executors to be allocated

ac
qu

is
iti

on
 d

el
ay

 (
m

s)

first 25% 50% 75% last

(b) Spark standalone

Fig. 3: Cost allocation of N=2 . . . 110 executors: Delay from task
load increase to first/last executor availability, as well as delay for
different percentiles on our 14-node test cluster (see IV-A0a).

We use a micro-benchmark to analyze the behavior of
Spark using a 14-node cluster (platform and configuration
details in IV-A0a) managed by YARN. In each execution, the
benchmark spawns a number (N) of tasks to allocate the same
number of executors. We execute the benchmark for N=2 up
to N=110 executors, repeating the execution for each N five
times. Results in Fig. 3a show the average task waiting time for
each N , i.e., the time for which the task is ready for execution
but no executor is assigned to it for different percentiles of
tasks. The results indicate that there is a base cost (first) of
≈3.2s, of which ≈1.9s can be attributed to the Spark executor
startup, which we break down in Fig. 4, while the remainder is
due to overheads in YARN’s container startup. In addition to
the base cost, there is a variable cost of up to ≈12.6s, resulting
in a executor acquisition cost of up to ≈15.8s in total.

To show that these issues are not YARN-specific, we repeat
the same benchmark with Spark’s standalone mode [33],
a lightweight, Spark-specific resource manager included in
Spark, using an equivalent configuration. To our knowledge,
this is the fastest way of starting Spark applications. The
results in Fig. 3b support our assumption. While Spark stan-
dalone is ≈23% faster than Spark+YARN, it is also inadequate
to operate at small timescales.

To understand the variable cost, we examine the resource
acquisition strategy more closely. Fig. 5 shows an excerpt
of our benchmark for N=110 executors, and illustrates how

0.0s 0.5s 1.0s 1.5s 1.9s

(1) Logging Subsystem
(2) Spark configuration
(3) Hadoop initialization
(4) Hadoop auth initialization

(5) Create RPC environment
(6) Setup/connect driver RPC endpoint
(7) Fetch Spark config from driver
(8) Start executor backend

(9) Register executor
(10) Misc

Fig. 4: Breakdown of startup costs of a Spark executor.

0

30

60

90

120

0s 5s 10s 15s 20s 25s
time (seconds)

of

 ta
sk

s
/ e

xe
cs

task load requested executors acquired executors

Fig. 5: Resource allocation in Spark+YARN.

Spark uses a slow-start strategy to acquire resources (green
line). While this approach might be suitable for long-running
tasks where such acquisition costs are negligible, for small
timescales, it significantly limits the ability to adapt to work-
load spikes.

The other source of the variable cost is YARN’s response
time which increases with the number of concurrent resource
requests. This effect is shown in Fig. 5 by the widening
gap between request and acquisition curves as the request
curve becomes steeper. A potential cause of this behavior
is YARN’s internal communication (between RM and node
manager (NM) as well as application master (AM)), much
of which is piggy-backed on periodic heartbeats [39]. While
this improves scaling, it may impact the latency of resource
acquisition negatively under load, as it is more likely in this
situation to miss the response window for the next heartbeat.

B. Resource Reclamation

As a consequence of the high resource allocation costs
shown above, AFs can either: i) release resources quickly
after use, at the cost of potentially slowing down application
execution due to the need to re-acquire them later, or ii) retain
resources for a long time after use, at the cost of poor
resource utilization. Indeed, Spark can be configured for either
approach and by default releases executors after 60s, which –
for short applications – corresponds to case ii. We evaluate
these cases on Spark+YARN by executing our benchmark for
N=110 two consecutive times for each of these two options,
summarizing the results in Fig. 6a. As shown in Fig. 6a, where
Spark releases executors 1s (minimum possible setting) after
they become idle, the number of executors (red) expands and
contracts with the number of tasks, resulting in a effective
executor utilization of 85% and a runtime of ≈28s for the
2nd wave of tasks. Contrarily, as shown in Fig. 6b, retaining
resources leads to a much faster execution of the 2nd wave
of tasks, and an effective executor utilization of 63% and a
runtime of ≈15s, for the 2nd wave of tasks, or ≈1.9x less
than case i. Both of the options are problematic, especially
under small timescales.

0

30

60

90

120

0s 5s 10s 15s 20s 25s 30s 35s 40s 45s 50s 55s
time (seconds)

of

 ta
sk

s
/ e

xe
cs

task load requested executors acquired executors

(a) Release idle resources after 1s

0

30

60

90

120

0s 5s 10s 15s 20s 25s 30s 35s 40s 45s 50s 55s
time (seconds)

of

 ta
sk

s
/ e

xe
cs

task load requested executors acquired executors

(b) Retain idle resources

Fig. 6: Consecutively allocating N=110 executors on Spark+YARN
with and without resource release. The black bar represents the
application end.

C. Summary

In the previous paragraphs, we examined in depth the
overheads of acquiring and releasing resources when using
a common analytics stack (Spark+YARN), and we conclude
that these overheads are prohibitive for managing resources at
small time granularities. Enabling efficient resource utilization
at small timescales requires minimizing these overheads, both,
in the AF and the RM.

III. MIRA

In this section, we illustrate how Mira addresses the inabil-
ities of systems like Spark and YARN to efficiently share re-
sources at small timescales. Mira is a resource manager (RM)
and a per-application task scheduler (AS), which (combined)
enable efficient, low-latency resource sharing as well as fast
application execution on shared clusters. Mira is built on two
main concepts:

1) Reusing and sharing task executors (e.g., Spark executors
or Docker containers). This minimizes resource acquisi-
tion overheads, but also has the potential to accelerate
application code execution, e.g., by reducing JIT over-
heads or benefiting from warm (software or hardware)
caches.

2) Tight integration of RM and AS. Mira improves the
interface (e.g., for resource reclamation) between the RM
and AFs to enable better resource utilization and enable
high elasticity of applications on small timescales.

Next, we elaborate on the concepts and implementation of
Mira as well as on how it addresses the limitations of existing
systems as discussed in II.

A. Overview

Fig. 7 shows a high-level overview of Mira’s architecture
along with the main communication paths. Mira consists of
two main components, the resource manager (RM) (III-C) and
an application scheduler (AS) (III-D). Multiple AS instances

DRV

EXEXEX

ASASAS

RM

Mira Application Framework

REST API

DAG/events

task schedule

disconnect EX

resource
demands

resource
allocation

assign DRV

(re-)register

status
update

task
disconnect

connect

Fig. 7: High-level overview of the Mira architecture.

can coexist, each scheduling a single application. Moreover,
Mira must be integrated in two external components. First, to
the application framework (AF), where Mira performs directed
acyclic graph (DAG) scheduling on behalf of the application.
Second, Mira is required to manage the execution environment
(EX) to enable reuse and sharing across applications. Compo-
nent interactions can be divided into external and internal.

a) Mira external API: Communication between AS and
AF as well as RM and EX is done via a (language-agnostic)
REST API. To integrate Mira into an AF, the AF has to
implement the required API. For Spark, we have done this by
implementing a connector module inside Spark’s application
driver (DRV) and executor, that interfaces between Mira and
Spark. The driver (DRV) uses the REST API to transmit a
(partial) application DAG to the AS as well as any relevant
status events, e.g. stage ready or task finished, but also metrics,
such as heap state of executors. In return, the driver receives
individual task schedules, i.e. mappings from runnable tasks
to executors, from the AS.

The EX registers itself with the RM and receives commands
as to which application it has been assigned to, and hence
should connect to. Disconnect commands are sent by the AS
via the DRV under two circumstances: the RM reduces the
resource allocation of the corresponding application, or the
AS decides that an EX is no longer needed. Afterwards, the
EX re-registers itself with the RM so that it can be reassigned
to another application.

b) Mira Internal API: Internally, Mira’s components
communicate via an intra-process event bus, operated by a
central event engine. Calls to the REST API are translated into
such events and relayed to the RM or an AS instance. Apart
from this, the majority of events concern changes in resource
demands from the ASs to the RM as well as changes in
resource allocations from the RM to the ASs. All changes are
propagates immediately in order to support high application
elasticity at small timescales. Within the AF, i.e. between DRV
and EX, communication is based on the AF’s native, albeit
extended protocol.

In the remainder of this section, we describe each compo-
nent in more detail (III-B to III-D) and close with discussing
some implementation aspects (III-E).

B. Execution Environment (EX)

The EX in Mira does not replace the AF’s native task
execution environment but wraps and extends it such that it
enables the executor process to be persistent, avoiding high
(as shown in II-A) restart costs. For JVM-based executors,
persistence also allows the conservation of the JIT cache so
the code can run immediately at native, instead of interpreted,
mode. We note that even different applications tend to share
large portions of the code (e.g., Spark execution run-time
and libraries). Aside from application code execution, this
also accelerates the EX control path, reducing the time from
assignment to acquisition, as can be seen by comparing the
delay between task load increase and executor availability in
Fig. 1b and Fig. 1c.

The EX itself is simple and supports two commands. First,
it can connect to a DRV via instruction from the RM, in
which case a new native execution environment is instantiated.
Second, it can disconnect from a DRV, if ordered by RM,
via the corresponding AS, in which case the native execution
environment is destroyed, and control is returned to the RM.

C. Resource Manager (RM)

The resource manager (RM) determines the resource share
of each application, based on a policy, and assigns and
revokes them from and to the ASs. Enabled by our previ-
ously described optimizations, we designed Mira’s RM under
the premise that resource acquisition is cheap. Hence, Mira
immediately reassigns resources if demands change, and does
so frequently, if required, allowing it to be more efficient at
small timescales. This is in contrast to other RMs, e.g. YARN,
which uses multi-second timeouts before revoking resources,
or Mesos, which uses an offer-based approach where an
application cannot actively request resources but has to wait
for an offer from Mesos, which might not come soon enough
when sub-second latency is required.

Currently, Mira uses a weighted fair-share scheduling pol-
icy, assigning each running application An the number of com-
pute resources RAn

(in form of executor instances) according
to the following equation:

RAn = Rtot ×
WAn∑|Apps|

m=0 min(ŴAm
,WAm

)

RAn are the resources assigned to application An, while
Rtot are the total resources. WAn and ŴAm are the fair-share
weight and the weight corresponding to the actually used re-
sources by Am, respectively. If resources remain unallocated,
e.g., because some applications do not fully utilize their fair
share (WAm > ŴAm), other applications get resources beyond
their weighted fair share. If some applications exceed their
fair-share (WAm

< ŴAm
), while other applications, that use

less than their fair-share, demand more resources, the RM will
request the corresponding ASs to immediately release the re-
quired amount of resources to satisfy the outstanding demands.
It is up to the AS to ensure timely compliance with these
requests. Another option would be to use task preemption, but

as we show in our evaluation (IV), our approach does not
negatively impact performance. The pseudo-code for Mira’s
RM is shown in Algorithm 1.

As the frequency of resource change demands increases
with the number of running applications, the RM has to be
able to keep decision latency low. Some of the methods we
use to achieve this are:

1) Resource change events are only generated by the AS
if they imply a change in resource assignments, e.g. an
application releases idle executors.

2) Resource change events are only processed by the RM
if they imply a change in resource assignments, e.g.
an application requests more executors while unassigned
executors remain or its fair share is not yet exhausted.

3) The RM aggregates multiple events when reevaluating
resource assignments in order to cope with high load.

In our multi-app benchmarks (IV-D), the median delay of
resource assignment reevaluation less than 100 µs.

Algorithm 1 Handle events and update resource assignments

1: procedure HANDLEEVENTS(event)
2: reschedule ← false
3: while event new events in queue or timeout do
4: if event impacts resource assignment then
5: reschedule ← true
6: end if
7: end while
8: if reschedule = true then
9: apps ← currently running applications

10: UPDATERESOURCEASSIGNMENTS(apps)
11: end if
12: end procedure
13: procedure UPDATERESOURCEASSIGNMENTS(apps)
14: determine relative share for each app
15: map relative into absolute share for each app
16: for all app ← apps that need to release executors do
17: notify AS to release executor(s)
18: end for
19: while unallocated executors exist do
20: if all apps are satisfied then break
21: end if
22: for all app ← apps entitled to more executors do
23: add one executor to app
24: end for
25: end while
26: end procedure

D. Application Scheduler (AS)
Mira supports plugable application schedulers with a strict

separation of policy and mechanism. The policy, i.e., deci-
sion making process is a component in Mira, whereas the
mechanism, i.e., the execution of these decisions, is integrated
into the AF. In contrast to many other schedulers [11], [26],
[38] but similarly to some [14], [15], [29] our AS is DAG-
based. That is, it exploits information from an annotated DAG,

consisting of stages (nodes) and data dependencies (edges), to
optimize task ordering and placement decisions.

s0

s1

s2

s0t0

s0t1

s0t2

s0t3

s1t0

s1t1

s1t2

s1t3

s2t0

s2t1

s2t2

s2t3

Time

E
x
e
c
u
to

rs

0 1 2 3 4 5

s0t0

s0t1
s0t2

s0t3

s1t0

s1t1
s1t2

s1t3

s2t0

s2t1

s2t2

s2t3

Time

E
x
e
c
u
to

rs

0 1 2 3 4 5

Fig. 8: Conceptual depiction of the schedule of a DAG (left) with
3 stages, 4 tasks each, using back-to-back stage scheduling (middle)
and concurrent scheduling (right) as implemented in Mira, where im-
proved JIT and data cache exploitation can accelerate task execution.

While this information offers many opportunities to improve
scheduling (e.g., addressing heterogeneity [20]), in the context
of this paper we exploit it as follows: Mira schedules indepen-
dent stages concurrently and concentrates tasks of each stage
on a dedicated subset of executors. This improves locality
since all tasks of a stage execute the same function and
often share data. By maximizing the number of same-stage
tasks per executor (without leaving any executor idle), we
also maximize the effectiveness of the JIT as well as data
caches, which can reduce task runtime, as depicted in Fig. 8,
by amortizing costs across a larger number of tasks. As some
of those costs do not scale with task runtime, this approach
can benefit short tasks in particular, which is a focus of Mira.

E. Implementation

Mira is implemented in approximately 8k lines of C++ code,
and will be made available at https://github.com/zrlkau/mira.

IV. EVALUATION

In our evaluation we compare Vanilla Spark1 on YARN with
our modified Spark+Mira. We attempt to answer three main
questions:

1) Can we reduce the recurring resource acquisition? In
IV-B and IV-C, we evaluate the impacts of reduced
system overheads for executor acquisition and application
runtime. As we will show, Mira reduces the acquisition
time by up to 434× in our micro-benchmarks. At the
same time, the overhead minimization resulted in a run-
time reduction of ≈1.5× for 50% of evaluated TPC-DS
queries (IV-C0a).

2) What impact does code execution acceleration by reusing
warm executors have? In IV-C0b we show that reusing
warm executors can speedup code execution significantly
and reduce application runtime by a factor of 2× or more
for 75% of evaluated TPC-DS queries.

3) Finally, we answer the question of what performance
impact Mira can have in a multi-application setting. In
IV-D, we combine all effects of the previous experiments
in a scenario with constant background load. In addition
we evaluate the impact of immediate executor release on
resource usage efficiency. As we will show, Mira is able

1We added some annotations to the code to measure certain performance
aspects of the scheduler. The same set of annotations are also present in our
modified version of Spark.

to achieve an overall performance improvement of up to
4.2×.

A. Test Setup

a) Cluster: Our test cluster consists of 14 compute nodes
with one additional control node, each equipped with two
Intel Xeon E5-2640v3 or E5-2650v2, 160-256 GB RAM,
CentOS/Fedora 26 Linux2. All nodes are connected with 56
GB IPoIB (Mellanox ConnectX-3) via a single Mellanox
SX6036 switch.

The control node runs Mira, YARN RM as well as name-
server for HDFS and does not execute any compute tasks.
Input data is read from HDFS, which is backed by 16 GB
ramdisks on each of the 14 remaining nodes. The HDFS bal-
ancer was used to evenly distribute data across the cluster. We
configured Mira and YARN to execute at most 8 concurrent
tasks per node, resulting in 112 possible executors. We chose
to limit the number of executors to 8 per node since we
observed significant slowdown of the execution beyond that
point for both, Mira and YARN. We use Spark’s client mode
for all tests with clients (application drivers) executed on the
control node.

b) Software: We use Apache YARN 2.7.3, Apache
HDFS 2.8.2, Apache Spark 2.2.2, Oracle HotSpot JVM
1.8.0 144. In order to perform detailed performance evalu-
ations we added and extended annotations within Spark at
certain points in its native DAG and task scheduler (e.g.
executor request, release and registration, task start and finish)
as well as its executor (e.g. startup and shutdown, task start
and finish). This slightly modified version was used as basis
to integrate Mira into Spark. We omit benchmarks using
Spark’s standalone resource manager as it only supports FIFO
application scheduling [33] but lacks resource reclamation
enforcement, e.g. via preemption, which our multi-application
benchmarks require.

c) Test applications: We use a simple test program that
generates constant background load in form of a large set of
short tasks, each running for ≈1 second. The background (BG)
application is capable of utilizing all available resources and
runs for the entire duration of each test. As foreground (FG)
applications, we use a set of 90 TPC-DS [37] queries3 which
read their input data (scaling factor = 100) from HDFS.

d) Settings: For all benchmarks, except where noted
otherwise, we use the settings shown in Table I.

B. Micro-Benchmarks

We run the micro-benchmark from II-A, which spawns
N=2. . . 110 tasks at a time, to acquire N=2. . . 110 executors in
order to evaluate whether Mira can reduce resource acquisition
time. Our results represent the average of 10× test runs.
Fig. 10 shows the results for Mira.

2Including Spectre and Meltdown fixes
3Some of our modifications to Spark’s lineage graph are incomplete and

do support all RDD types yet, which is why we were not able to execute all
100 TPC-DS queries.

https://github.com/zrlkau/mira

 0

50

100

150

avg
01 03 04 05 06 07 08 10 11 12 13 14a
14b
15 16 17 18 19 20 21 22 23a
23b
24a
24b
25 26 27 29 30 34 35 36 37 38 39a
39b
40 41 42 43 44 45 46 47 48 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

Query

La
te

nc
y

(s
ec

on
ds

) Spark+Yarn
Spark+Mira (cold)
Spark+Mira (warm)

Fig. 9: Comparison of TPC-DS query execution latency between Spark+YARN and Spark+Mira on cold and warm executors in a single
application setting using the default 60s executor release (we omit the results for sharing optimized settings due to space constraints).

TABLE I: Relevant non-default settings used throughout our evalua-
tions, unless noted otherwise

Spark setting Value (default)
spark.dynamicAllocation.enabled true (false)
spark.shuffle.service.enabled true (false)
spark.dynamicAllocation.minExecutors 1 (1)
spark.dynamicAllocation.executorIdleTimeout 1s (60s)
YARN setting Value (default)
yarn.nodemanager.resource.cpu-vcores 8 (unlimited)
yarn.resourcemanager.scheduler.class CapacityScheduler

(FairScheduler)
yarn...preemption.total preemption per round 1.0 (0.1)
yarn...preemption.max wait before kill 1s (15s)
yarn...preemption.monitoring interval 1s (3s)
Java setting Value
-XX:MaxHeapSize (driver) 12g
-XX:MaxHeapSize (executor) 8g
-XX:+UseG1GC

0

500

1000

1500

0 10 20 30 40 50 60 70 80 90 100 110
of executors to be allocated

ac
qu

is
iti

on
 d

el
ay

 (
m

s)

first 25% 50% 75% last

Fig. 10: Allocation cost of N=2 . . . 110 executors of Spark+Mira:
Delay from task load increase to first/last executor availability, as well
as delay for different percentiles on our test cluster (see IV-A0a). Note
that the last executors to register are always cold executors, while all
others are always warm. Compare with Fig. 3.

On average, Mira is able to reduce executor acquisition
time for the 75th percentile to ≈36ms or a factor of 112×
– 434× (4s – 8.6s) faster than Spark+YARN and 85× –
191× compared to Spark standalone, respectively, depending
on the total number of executors requested. This represents
the share of warm executors in each test run. However, in
each run we add one previously unused, and therefore cold,
executor, which register always last, after ≈1.1s. Considering
only the last executor to register, Mira is able to reduce delays
by 4.9× – 14.6× (5.3s – 15.6s) compared to Spark+YARN
and 3× – 9× (3.2s – 9.6s) for Spark standalone, respectively.
Furthermore, while the delay in Spark+YARN and Spark
standalone increases with the number of executors requested at
a time (Fig. 3), it stays constant for Spark+Mira in all tested
cases (Fig. 10). This shows that the long-lived EXs (II-A),

as well as the exploitation of JIT caches for the control path
(III-B), offer significant resource sharing benefits.

C. Single Application Benchmarks

In this section we present the evaluation results of Mira for
single applications in order to show the impact of the reduced
acquisition overhead as well as code execution acceleration
separately. We perform three types of benchmarks.

1) As baseline, we execute each TPC-DS query 5× on
Spark+YARN with dynamic resource allocation enabled.

2) In order to evaluate the benefits of the reduced system
overhead, we execute each TPC-DS query 5× and com-
pare it to the baseline. In-between each execution we
restart Mira to avoid any warm-up effects.

3) In order to evaluate the benefits of code execution ac-
celeration, we execute all TPC-DS queries back to back
5× and compare it to the previous benchmark. This
represents the optimal case, because it maximizes the
effectiveness of code jitting.

100%

 75%

 50%

 25%

 0%

1.0 2.0 3.0 4.0 5.0 6.0 7.0

speedup (factor)

fr
ac

tio
n

of
 q

ue
rie

s
(%

)

Spark+Mira (cold)
Spark+Mira (warm)

(a) executor release after 60s

100%

 75%

 50%

 25%

 0%

1.0 2.0 3.0 4.0 5.0 6.0 7.0

speedup (factor)

fr
ac

tio
n

of
 q

ue
rie

s
(%

)

Spark+Mira (cold)
Spark+Mira (warm)

(b) executor release after 1s

Fig. 11: Comparison of Spark+YARN with default (a) and sharing
optimized (b) idle executor release vs. Mira on cold and warm
executors.

Fig. 11 summarizes our results. Comparing Spark+YARN
with Spark+Mira using the default 60s idle executor release
setting for Spark and cold executors for Mira, we see a
runtime reduction of 1.5× or more for 50% of all queries
(Fig. 11a) due to reduced executor acquisition overhead (III-B)
as well as our acquisition strategy (III-D). However, the default
setting of Spark w.r.t. executor release does not enable efficient
resource sharing on small timescales. In order to evaluate
Spark’s behavior in such a scenario, we reduced the idle
executor release timeout for executors without any cached
data to 1s (Fig. 11b). Here, Spark+Mira achieves a runtime

reduction of ≈2.1× for 50% of all queries. The difference
can be explained by the additional cost that Spark+YARN has
to pay for executor reacquisition (see II-B). In both settings,
we suspect that runtime improvements are, in part, also due
to the same-stage task concentration on executors (see III-D)
that further optimizes JIT and data cache effectiveness.

On warm executors, Mira achieves an acceleration by a
factor of 2.1 or more for 50% or all queries, using default
executor release settings and ≈3 for the sharing optimized
settings, respectively, due to a more effective JIT exploitation.
The complete results for all 3 benchmarks are shown in Fig. 9.

In the following we are going to break down the results and
analyze the impact of Mira’s executor acquisition strategy as
well as the reuse of warm executors separately.

a) Reduced System Overheads: Mira reduces the re-
sponse time to workload changes as well as the executor
acquisition time. Fig. 12 exemplifies both aspects. As one can
see in Fig. 12a, the maximum parallelism and the number
of executors requested lag by several seconds in the case of
Spark+YARN, due to Spark’s slow-start resource acquisition
strategy. In total, it can take up to 15s to acquire all executors,
which is in line with the delay we measured in II-A, and
poses a significant overhead for short-running applications and
workload spikes. Fig. 12b shows the same query executed on
Spark+Mira. Here, one can see that Mira requests executors
immediately (see III-C), which leads to a much faster ramp-
up. Cold executors are acquired with a delay of ≈1s after the
load increase, which also corresponds to our micro-benchmark
results in IV-B.

Fig. 12c as well as in the 2nd wave of tasks in Fig. 12b show
that, once executors are warm, the acquisition time is, in line
with our micro-benchmarks in IV-B, reduced even further.

b) Code Execution Acceleration: Mira reuses executors
within and across applications in order to exploit benefits
stemming from JVM warm-up, i.e. code jitting, and the
resulting execution of native code instead interpreted byte
code. Therefore, applications will be able to run on warm
executors most of the time. Warm executors can accelerate two
aspects. First, the framework functions can be optimized more
efficiently, which is the reason for faster executor acquisition,
as shown Fig. 10. Secondly, application code itself, especially
parts that heavily rely on function calls to often used libraries,
can benefits from more efficient execution. Fig. 12 shows both
aspects. Comparing Fig. 12b and Fig. 12c, one can see the
much narrower spikes in maximum application parallelism,
which indicates that application code is executed faster and
tasks finish in a shorter period of time.

Lastly, while YARN takes about ≈10s from application
submission to admission and the start of the very first task,
Mira only requires ≈4s.

D. Multi-Application Experiments

In this section we present the evaluation results for
Spark+YARN and Spark+Mira with multiple concurrently
running applications in order to show benefits of the aspects

0

50

100

150

0s 5s 10s 15s 20s 25s 30s 35s
time (seconds)

of

 ta
sk

s
/ e

xe
cs

task load requested executors acquired executors

(a) Spark+YARN

0

50

100

150

0s 5s 10s 15s 20s 25s 30s 35s
time (seconds)

of

 ta
sk

s
/ e

xe
cs

task load requested executors acquired executors

(b) Spark+Mira (cold)

0

50

100

150

0s 5s 10s 15s 20s 25s 30s 35s
time (seconds)

of

 ta
sk

s
/ e

xe
cs

task load requested executors acquired executors

(c) Spark+Mira (warm)

Fig. 12: Plot of TPC-DS query 7 (complete application execution)
on 112 executors. In (b) and (c), the blue and green line coincide.
The vertical black bar indicates the end of the application.

evaluated in IV-C0a combined with the tight coupling of RM
and AS of Mira in a shared environment.

For this benchmark, we execute two applications con-
currently. A background (BG) application, consisting of an
infinite loop of stages, each with 8192 1s-tasks. The purpose
of the BG application is to generate a constant task load on the
cluster in order to force the RM to actively balance resource
requests from multiple applications and to show the effects
of loose vs. tight coupling of RM and AS in Spark+YARN
(II-B) and Spark+Mira (III-C), respectively. As before we use
TPC-DS queries as foreground (FG) applications.

We configured FG and BG queues in YARN’s capacity
scheduler, both with a guaranteed minimum share of 50%
of all resources and a maximum of 99%4. For Mira we use
comparable settings.

As YARN’s default settings can lead to significant delays
in resource reassignment, and therefore inflated runtimes, we
modified the default settings according to Table I to allow
YARN to react more quickly to changing resource demands.
While those were the best settings for YARN we found,
improving our baseline by a factor of ≈1.14, we did not do a
full parameter space exploration. We repeat each test 5×.

The complete results are shown in Fig. 13 and a summary
CDF is shown in Fig. 14. Spark+Mira is able to achieve a
runtime reduction of ≈2.4× for 50% of all queries. At the

4A maximum queue share of 100% would effectively block another
application from being started due to lack of resources. As workaround, our
settings ensure that no single application can occupy all resources.

 0

50

100

150

200

250

avg
01 03 04 05 06 07 08 10 11 12 13 14a
14b
15 16 17 18 19 20 21 22 23a
23b
24a
24b
25 26 27 29 30 34 35 36 37 38 39a
39b
40 41 42 43 44 45 46 47 48 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

Query

La
te

nc
y

(s
ec

on
ds

) Spark+Mira Spark+Yarn

Fig. 13: Comparison of query total execution latency between Spark+YARN and Spark+Mira with constant BG load. The first column is the
average across all runs.

100%

 75%

 50%

 25%

 0%

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

speedup (factor)

fr
ac

tio
n

of
 q

ue
rie

s
(%

)

Spark+Mira

Fig. 14: Average speedup of Spark+Mira compared to Spark+YARN
with constant BG load.

same time, Spark+Mira achieved a BG task throughput of 91
tasks per second vs. 87 for Spark+YARN5. In the following
we are going to analyze the results more closely.

Fig. 15 and Fig. 16 show the allocation of resources to the
BG and FG applications in a benchmark run on Spark+YARN
and Spark+Mira, along with the task load at any point in
time. Areas in green (blue) represent executors allocated to
the BG (FG) application. Red areas represent executors that
the RM has not assigned to any application or are in-between
assignments.

A comparison of both figures highlights multiple points:
First, Spark+Mira is able to execute the same number of
queries in 148s instead of 267s. This is due to the lower latency
executor acquisition by the FG application (compare delay
from query start to executor increase) as well as the overall
shorter task runtime (compare size of blue areas). Moreover,
there are fewer unassigned executors during the transition
period as shown by the virtually non-existent red spikes in
Fig. 16. We expect that with more applications and more
executor reassignments, the number of unassigned executors
will increase further for Spark+YARN. Finally, the high cost of
resource reacquisition for Spark+YARN (see also Fig. 6) can
be seen during the execution of query 4 where Spark releases
executors due to a short dip in task load (at ≈165s) just to
reacquire them a few seconds later with a multi-second delay.

The efficiency metrics in table II show the differences more
concretely. Spark+YARN need 914 ES6 on average to assign

5Note that the background tasks had a constant runtime of 1s, thus are not
able to benefit from warm-up effects.

6ES = executor seconds (like CPU seconds), i.e. a number of executors
being in a state for a number of seconds, e.g. 2 executors being busy for 5
seconds results in an busy value of 10 ES.

q1 q3 q4 q5

0

25

50

75

100

112

 0s 20s 40s 60s 80s 100s 120s 140s 160s 180s 200s 220s 240s 260s

E
xe

cu
to

rs

unassigned executors BG/idle BG/busy FG/busy FG/idle

0

200

400

 0s 20s 40s 60s 80s 100s 120s 140s 160s 180s 200s 220s 240s 260s
Ta

sk
s

Fig. 15: Excerpt of Spark+YARN multi-app benchmark run showing
the resource sharing between BG and FG applications (top) and the
corresponding task load (maximal parallelism) of the FG application
(bottom). FG application submissions are indicated by the labelled
vertical black lines. Compare with figure 16.

q1 q3 q4 q5

0

25

50

75

100

112

 0s 20s 40s 60s 80s 100s 120s 140s 160s 180s 200s 220s 240s 260s

E
xe

cu
to

rs

unassigned executors BG/idle BG/busy FG/busy FG/idle

0

200

400

 0s 20s 40s 60s 80s 100s 120s 140s 160s 180s 200s 220s 240s 260s

Ta
sk

s

Fig. 16: Excerpt of Spark+Mira multi-app benchmark run showing
the resource sharing between BG and FG applications (top) and the
corresponding task load (maximal parallelism) of the FG application
(bottom). FG application submissions are indicated by the labelled
vertical black lines. Compare with figure 15.

all entitled resources to the FG application after their task
load increased whereas Spark+Mira only requires 131 ES or
6.97× less. In 43.5% of cases – which correspond to short task
load (see task load graph in 15 for example) – the reaction
time of Spark+YARN is longer than the load persists, whereas
this only happens in 0.9% of cases for Spark+Mira. Finally,
Spark+Mira achieves a higher resource utilization rate, both in
terms of number of resources unassigned as well as in numbers
of assigned, but idle resources.

TABLE II: Efficiency metrics (average over 5 TPC-DS runs). The
unit ES refers to executor seconds (like CPU seconds), i.e. a number
of executors × a number of seconds.

Spark+YARN Spark+Mira
Resource assignment delay (FG) 914 ES 131 ES
Missed resource increases (FG) 43.5% 0.9%
Total unassigned and idle resources 11.1% 2.9%

E. Conclusion

Our evaluation shows that Spark+Mira can – due to it’s re-
duced resource acquisition overhead as well as code execution
acceleration – reduce runtime of workloads significantly while
utilizing resources more efficiently. While we found this to be
true for all tested TPC-DS queries in a shared environment,
shorter queries benefit more than longer queries as not all
overheads scale with the overall execution time.

V. RELATED WORK

A. Resource Managers and Schedulers

YARN [39] and Mesos [17] are two of the most commonly
used resource schedulers, both operating on a two-level struc-
ture (AFs/RM), but they are incapable to deal with small
timescales. We illustrate YARN’s issues in II. Mesos does
not allow applications to request resources but makes periodic
offers which applications can accept or reject. This makes low-
latency resource acquisition difficult as the application has no
control over the timing and frequency of resource offers.

There are various other approaches to cluster resource man-
agement. Kubernetes [5] is a container orchestration system
based upon Google’s internal Borg [40] and Omega [30]
focusing on reliable, scalable and elastic deployment of ser-
vice oriented workloads. Resources managers have been used
to solve various optimization problems, such as workload-
specific co-scheduling [8], [9], resource packing [13] and
near-term capacity planning [38] and overall optimization of
scheduling decisions at scale [11], [19], [26]. These works
are largely orthogonal to Mira, which focuses on minimizing
recurring resource acquisition costs and maximizing sharing
efficiency.

B. Application Frameworks and Schedulers

Tez [29] is a meta-framework that focuses on providing
common functionality (e.g. a DAG scheduler), similarly to
Mira, for application frameworks, such as Hive [36] and Pig
[28]. In contrast to Mira, Tez requires YARN as resource
manager.

Storm [35], Flink [6] and Apex [4] are predominantly stream
processing frameworks, though the latter two can also be used
for batch processing. We believe that they can benefit from
the low latency resource scheduling Mira provides in order to
quickly adapt to changes in load.

C. Execution Environment Optimizations

Lion et. al [22] have done an extensive study of the impact
and sources of JVM cold start costs across several distributed

frameworks and applications, such as Spark, Hive and HDFS,
and conclude that the warm-up time is a common bottleneck
for short-running jobs. They present a transparent client/server
JVM replacement that enables a persistent, warmed-up JVM
process to be reused repeatedly and offers a large speedup
for certain workloads. Mira applies the same optimizations,
but it achieves it by reusing executors. Similar optimizations
exist for other environments than JVM. Oakes et. al [25]
have studied overheads of Python and containers in server-
less frameworks and unveil significant costs for cold-starting
Docker containers and the Python runtime and they present
approaches at how to minimize both, e.g. by forking new
Python runtimes from existing ones. A similar approach is
used in Sand [2].

D. Serverless Execution
The serverless execution model, offered by many cloud

providers [3], [12], [18], [23], provides high scalability and
automatic elasticity for applications that process independent
events. These properties are also desirable for data analytics
workloads [21], resulting in serverless offerings for Spark [27],
[31]. We believe Mira is an attractive option for building such
offerings, due to its low latency resource management.

VI. CONCLUSION AND FUTURE WORK

We presented Mira, a system that enables efficient re-
source sharing for analytics applications that operate on small
timescales and achieves significant performance and efficiency
improvements over existing techniques, accelerating analytics
workloads by up to 4.2× in a shared environment.

As a continuation of our work, we plan to integrate Mira
into other applications frameworks such as Hive or Flink,
as well as explore other use-cases, such as graph process-
ing and elastic machine learning. Mira uses an one-size-
fits-all executor model which might not always be the best
option (e.g., incompatible libraries or security issues). We plan
to investigate, using multiple executor pools with different
access policies and configurations, in future work. Mira’s
source and further information will be made available at
https://github.com/zrlkau/mira.

REFERENCES

[1] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A., DEAN,
J., DEVIN, M., GHEMAWAT, S., IRVING, G., ISARD, M., ET AL.
Tensorflow: A system for large-scale machine learning. In OSDI (2016),
vol. 16, pp. 265–283.

[2] AKKUS, I. E., CHEN, R., RIMAC, I., STEIN, M., SATZKE, K., BECK,
A., ADITYA, P., AND HILT, V. Sand: Towards high-performance
serverless computing. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC) (2018).

[3] AMAZON. https://aws.amazon.com/lambda/, accessed 2018/06/22.
[4] APEX, A. https://apex.apache.org, accessed 2018/08/18.
[5] BURNS, B., GRANT, B., OPPENHEIMER, D., BREWER, E., AND

WILKES, J. Borg, omega, and kubernetes. Queue 14, 1 (2016), 10.
[6] CARBONE, P., KATSIFODIMOS, A., EWEN, S., MARKL, V., HARIDI,

S., AND TZOUMAS, K. Apache flink: Stream and batch processing
in a single engine. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering 36, 4 (2015).

[7] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified data processing
on large clusters. In Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Volume 6 (Berkeley,
CA, USA, 2004), OSDI’04, USENIX Association, pp. 10–10.

https://github.com/zrlkau/mira
https://aws.amazon.com/lambda/
https://apex.apache.org

[8] DELIMITROU, C., AND KOZYRAKIS, C. Paragon: Qos-aware schedul-
ing for heterogeneous datacenters. SIGPLAN Not. 48, 4 (Mar. 2013),
77–88.

[9] DELIMITROU, C., AND KOZYRAKIS, C. Quasar: Resource-efficient and
qos-aware cluster management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2014), ASPLOS ’14, ACM,
pp. 127–144.

[10] FLINK. https://issues.apache.org/jira/browse/FLINK-4319, accessed
2018/08/06.

[11] GOG, I., SCHWARZKOPF, M., GLEAVE, A., WATSON, R. N. M., AND
HAND, S. Firmament: Fast, centralized cluster scheduling at scale. In
12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16) (GA, Nov. 2016), USENIX Association, pp. 99–115.

[12] GOOGLE. https://cloud.google.com/functions/, accessed 2018/06/22.
[13] GRANDL, R., ANANTHANARAYANAN, G., KANDULA, S., RAO, S.,

AND AKELLA, A. Multi-resource packing for cluster schedulers. In
ACM SIGCOMM Computer Communication Review (2014), vol. 44,
ACM, pp. 455–466.

[14] GRANDL, R., CHOWDHURY, M., AKELLA, A., AND ANANTHA-
NARAYANAN, G. Altruistic scheduling in multi-resource clusters.
In Proceedings of OSDI16: 12th USENIX Symposium on Operating
Systems Design and Implementation (2016), p. 65.

[15] GRANDL, R., KANDULA, S., RAO, S., AKELLA, A., AND KULKARNI,
J. Graphene: Packing and dependency-aware scheduling for data-parallel
clusters. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16) (GA, Nov. 2016), USENIX Association,
pp. 81–97.

[16] HADOOP, A. https://hadoop.apache.org/, accessed 2018/06/23.
[17] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A., JOSEPH,

A. D., KATZ, R. H., SHENKER, S., AND STOICA, I. Mesos: A platform
for fine-grained resource sharing in the data center. In NSDI (2011),
vol. 11, pp. 22–22.

[18] IBM. https://www.ibm.com/cloud/functions, accessed 2018/06/22.
[19] ISARD, M., PRABHAKARAN, V., CURREY, J., WIEDER, U., TALWAR,

K., AND GOLDBERG, A. Quincy: Fair scheduling for distributed com-
puting clusters. In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles (New York, NY, USA, 2009), SOSP
’09, ACM, pp. 261–276.

[20] KAUFMANN, M., AND KOURTIS, K. The HCl Scheduler: Going all-
in on Heterogeneity. In 9th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 17) (Santa Clara, CA, 2017), USENIX
Association.

[21] KLIMOVIC, A., WANG, Y., KOZYRAKIS, C., STUEDI, P., PFEFFERLE,
J., AND TRIVEDI, A. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), USENIX Association.

[22] LION, D., CHIU, A., SUN, H., ZHUANG, X., GRCEVSKI, N., AND
YUAN, D. Don’t get caught in the cold, warm-up your jvm: Understand
and eliminate jvm warm-up overhead in data-parallel systems. In OSDI
(2016), pp. 383–400.

[23] MICROSOFT. https://azure.microsoft.com/en-us/services/functions/,
2018.

[24] MURRAY, D. G., MCSHERRY, F., ISAACS, R., ISARD, M., BARHAM,
P., AND ABADI, M. Naiad: A timely dataflow system. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles
(New York, NY, USA, 2013), SOSP ’13, ACM, pp. 439–455.

[25] OAKES, E., YANG, L., ZHOU, D., HOUCK, K., HARTER, T., ARPACI-
DUSSEAU, A., AND ARPACI-DUSSEAU, R. SOCK: Rapid task provi-
sioning with serverless-optimized containers. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18) (Boston, MA, 2018), USENIX
Association.

[26] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STOICA, I.
Sparrow: Distributed, low latency scheduling. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2013), SOSP ’13, ACM, pp. 69–84.

[27] OWEN, G., LIANG, E., CHOCKALINGAM, P., AND SHANKAR, S.
Databricks Serverless: Next Generation Resource Management for
Apache Spark, June 2017.

[28] PIG. https://pig.apache.org, accessed 2018/08/16.
[29] SAHA, B., SHAH, H., SETH, S., VIJAYARAGHAVAN, G., MURTHY, A.,

AND CURINO, C. Apache TEZ: A unifying framework for modeling and
building data processing applications. In Proceedings of the 2015 ACM
SIGMOD international conference on Management of Data (2015),
ACM, pp. 1357–1369.

[30] SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-MALEK, M., AND
WILKES, J. Omega: Flexible, scalable schedulers for large compute
clusters. In Proceedings of the 8th ACM European Conference on
Computer Systems (New York, NY, USA, 2013), EuroSys ’13, ACM,
pp. 351–364.

[31] SOWRIRAJAN, V., BHUSHAN, B., AND AHUJA, M. Qubole announces
apache spark on aws lambda, Nov. 2017.

[32] SPARK. https://spark.apache.org/docs/latest/job-scheduling.html, ac-
cessed 2018/08/06.

[33] SPARK. https://spark.apache.org/docs/latest/spark-standalone.html, ac-
cessed 2018/08/18.

[34] STORM. https://issues.apache.org/jira/browse/STORM-2284, accessed
2018/08/06.

[35] STORM. http://storm.apache.org, accessed 2018/08/06.
[36] THUSOO, A., SARMA, J. S., JAIN, N., SHAO, Z., CHAKKA, P.,

ANTHONY, S., LIU, H., WYCKOFF, P., AND MURTHY, R. Hive: A
warehousing solution over a map-reduce framework. Proc. VLDB
Endow. 2, 2 (Aug. 2009), 1626–1629.

[37] TRIVEDI, A. https://github.com/zrlio/sql-benchmarks, accessed
2018/08/16.

[38] TUMANOV, A., ZHU, T., PARK, J. W., KOZUCH, M. A., HARCHOL-
BALTER, M., AND GANGER, G. R. Tetrisched: Global rescheduling
with adaptive plan-ahead in dynamic heterogeneous clusters. In Pro-
ceedings of the Eleventh European Conference on Computer Systems
(New York, NY, USA, 2016), EuroSys ’16, ACM, pp. 35:1–35:16.

[39] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGARWAL, S.,
KONAR, M., EVANS, R., GRAVES, T., LOWE, J., SHAH, H., SETH, S.,
SAHA, B., CURINO, C., O’MALLEY, O., RADIA, S., REED, B., AND
BALDESCHWIELER, E. Apache Hadoop YARN: Yet another resource
negotiator. In Proceedings of the 4th Annual Symposium on Cloud
Computing (New York, NY, USA, 2013), SOCC ’13, ACM, pp. 5:1–
5:16.

[40] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPENHEIMER, D.,
TUNE, E., AND WILKES, J. Large-scale cluster management at Google
with Borg. In Proceedings of the Tenth European Conference on
Computer Systems (New York, NY, USA, 2015), EuroSys ’15, ACM,
pp. 18:1–18:17.

[41] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J., SHENKER, S.,
AND STOICA, I. Spark: Cluster computing with working sets. In
Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud
Computing (Berkeley, CA, USA, 2010), HotCloud’10, USENIX Asso-
ciation, pp. 10–10.

https://issues.apache.org/jira/browse/FLINK-4319
https://cloud.google.com/functions/
https://hadoop.apache.org/
https://www.ibm.com/cloud/functions
https://pig.apache.org
https://spark.apache.org/docs/latest/job-scheduling.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://issues.apache.org/jira/browse/STORM-2284
http://storm.apache.org
https://github.com/zrlio/sql-benchmarks

	Introduction
	Background and Motivation
	Resource Allocation Costs
	Resource Reclamation
	Summary

	Mira
	Overview
	Execution Environment (EX)
	Resource Manager (RM)
	Application Scheduler (AS)
	Implementation

	Evaluation
	Test Setup
	Micro-Benchmarks
	Single Application Benchmarks
	Multi-Application Experiments
	Conclusion

	Related Work
	Resource Managers and Schedulers
	Application Frameworks and Schedulers
	Execution Environment Optimizations
	Serverless Execution

	Conclusion and Future Work
	References

