
Toward a Better Understanding and Evaluation of Tree
Structures on Flash SSDs

Diego Didona, Nikolas Ioannou, Radu Stoica
IBM Research Zurich

Rüschlikon, Switzerland
ddi,nio,rst@zurich.ibm.com

Kornilios Kourtis∗
Cilium

Zurich, Switzerland
kkourt@kkourt.io

ABSTRACT
Solid-state drives (SSDs) are extensively used to deploy persistent
data stores, as they provide low latency random access, high write
throughput, high data density, and low cost. Tree-based data struc-
tures are widely used to build persistent data stores, and indeed
they lie at the backbone of many of the data management systems
used in production and research today.

We show that benchmarking a persistent tree-based data struc-
ture on an SSD is a complex process, which may easily incur subtle
pitfalls that can lead to an inaccurate performance assessment. At
a high-level, these pitfalls stem from the interaction of complex
software running on complex hardware. On the one hand, tree struc-
tures implement internal operations that have non-trivial effects
on performance. On the other hand, SSDs employ firmware logic to
deal with the idiosyncrasies of the underlying flash memory, which
are well known to also lead to complex performance dynamics.

We identify seven benchmarking pitfalls using RocksDB and
WiredTiger, two widespread implementations of an LSM-Tree and
a B+Tree, respectively. We show that such pitfalls can lead to in-
correct measurements of key performance indicators, hinder the
reproducibility and the representativeness of the results, and lead
to suboptimal deployments in production environments. We also
provide guidelines on how to avoid these pitfalls to obtain more
reliable performance measurements, and to perform more thorough
and fair comparisons among different design points.

PVLDB Reference Format:
Diego Didona, Nikolas Ioannou, Radu Stoica and Kornilios Kourtis. Toward
a Better Understanding and Evaluation of Tree Structures on Flash SSDs.
PVLDB, 14(3): 364 - 377, 2021.
doi:10.14778/3430915.3430926

1 INTRODUCTION
Flash solid-state drives (SSDs) are widely used to deploy persis-
tent data storage in data centers, both in bare-metal and cloud
deployments [25, 27, 29, 37, 63, 72, 74], while also being an integral
part of public cloud offerings [2, 12, 13]. While SSDs with novel
technologies such as 3D Xpoint [18, 49] offer significant advan-
tages [38, 39, 79], they are not expected to replace flash-based SSDs
anytime soon. These newer technologies are not yet as mature

∗Work done while at IBM Research Zurich
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 3 ISSN 2150-8097.
doi:10.14778/3430915.3430926

from a technology density standpoint, and have a high cost per GB,
which significantly hinders their adoption. Hence, flash SSDs are
expected to be the storage medium of choice for many applications
in the short and medium term [19].

Persistent tree data structures (PTSes) are widely used to index
large datasets. PTSes are particularly appealing, because, as opposed
to hash-based structures, they allow data to be stored in sorted
order, thus enabling efficient implementations of range queries and
iterators over the dataset. Examples of PTSes are the log structured
merge (LSM) tree [55], used, e.g., by RocksDB [27] and BigTable [10];
the B+Tree [14], used, e.g., by Db2 [35] and WiredTiger [52] (which
is the default storage engine in MongoDB [51]); the Bw-tree [40],
used, e.g., by Hekaton [24] and Peloton [30, 58]; the B-𝜖 tree [8],
used, e.g., by Tucana [57] and TokuMX [59].

Over the last decade, due to the reduction in the price of flash
memory, PTSes have been increasingly deployed over flash SSDs [50,
69]. Not only do PTSes use flash SSDs as a drop-in replacement
for hard disk drives, but new PTS designs are specifically tailored
to exploit the capabilities of flash SSDs and their internal architec-
tures [43, 65, 71, 75, 76].
Benchmarking PTSes on flash SSDs. Evaluating accurately and
fairly the performance of PTSes on flash SSDs is a task of para-
mount importance for both industry and research in order to be
able to compare alternative designs. Unfortunately, as we show in
this paper, evaluating performance is a complex process, which
may easily incur subtle pitfalls that can lead to non-reproducible
performance results and inaccurate conclusions.

The reason for this complexity is the intertwined effects of the
internal dynamics of flash SSDs and of the PTS implementations.
On the one hand, flash SSDs employ firmware logic to deal with
the idiosyncrasies of the underlying flash memory, which results
in highly non-linear performance dynamics [23, 33, 66, 67]. On
the other hand, PTSes implement complex operations, (e.g., com-
pactions in LSM-Trees and rebalancing in B+Trees) and update
policies (e.g., in a log-structured fashion vs. in-place). These design
choices make performance hard to analyze [22]. They also result in
widely different access patterns towards the underlying SSDs, thus
leading to complex, intertwined performance dynamics.
Contributions. We identify seven benchmarking pitfalls which
relate to different aspects of the evaluation of a PTS deployed on a
flash SSD, and we provide guidelines on how to avoid these pitfalls.
We provide specific suggestions both to academic researchers, to
improve the fairness, completeness and reproducibility of their re-
sults, and to performance engineers, to help them identify the most
efficient and cost-effective PTS for their workload and deployment.

In brief, the pitfalls we describe and their consequences on the
PTS benchmarking process are the following:

364

https://doi.org/10.14778/3430915.3430926
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3430915.3430926

(1) Running short tests. Flash SSDs have time-evolving per-
formance dynamics. Short tests lead to results that are not
representative of the long-term application performance.

(2) Ignoring the device write amplification (WA-D). SSDs
perform internal garbage collection that leads to write am-
plification. Ignoring this metric leads to inaccurate measure-
ments of the I/O efficiency of a PTS.

(3) Ignoring the internal state of the SSD. Experimental re-
sults may significantly vary depending on the initial state of
the drive. This pitfall leads to unfair and non-reproducible
performance measurements.

(4) Ignoring the dataset size. SSDs exhibit different perfor-
mance depending on the amount of data stored. This pitfall
leads to biased evaluations.

(5) Ignoring the extra storage capacity a PTSneeds toman-
age data and store additionalmeta-data.This pitfall leads
to ignoring the storage allocation versus performance trade-
off of a PTS, which is methodologically wrong and can result
in sub-optimal deployments in production systems.

(6) Ignoring SSD over-provisioning. Over-provisioning an
SSD (i.e., reserving part of its capacity for internal operations)
can improve the performance of a PTS, at the cost of reducing
the amount of data that the PTS can index. This pitfall leads
to the capacity versus performance trade-off achievable by a
PTS being ignored.

(7) Ignoring the effect of the underlying storage technol-
ogy on performance. This pitfall leads to drawing quan-
titative and qualitative conclusions that do not hold across
different SSD types.

We present experimental evidence of these pitfalls using an
LSM-Tree and a B+Tree, the two most widely used PTSes, which
are also at the basis of several other PTS designs [7, 45, 62]. We
consider the LSM-Tree implementation of RocksDB, and the B+Tree
implementation of WiredTiger. We use these two systems since
they are widely adopted in production systems and research studies.

The storage community has studied the performance of flash
SSDs extensively, focusing on understanding, modeling, and bench-
marking their performance [23, 36, 66, 68]. Despite this, we have
found that many works from the systems and databases commu-
nities are not aware of the pitfalls in evaluating PTSes on SSDs.
Our work offers a list of factors to consider, and bridges this gap
between these communities by illustrating the intertwined effects
of the complex dynamics of PTSes and flash SSDs. Ultimately, we
hope that our work paves the way for a more rigorous, fair, and
reproducible benchmarking of PTSes on flash SSDs.

2 BACKGROUND
Section 2.1 provides an overview of the PTSes that we use to demon-
strate the benchmarking pitfalls, namely LSM-Trees and B+Trees.
Section 2.2 provides background on the key characteristics of flash-
based SSDs that are related to the benchmarking pitfalls we describe.
Figure 1 shows the flow of write operations from an application
deployed over a PTS to the flash memory of an SSD.

Figure 1: Write amplification in PTSes. The PTS issues addi-
tional writes to the SSD to maintain its internal tree struc-
ture, which lead to application-level write-amplification.
The SSD firmware performs additional writes to overcome
the lack of in-place update capabilities of flash memory,
which lead to device-level write amplification.

2.1 Persistent Tree Data Structures
We start by introducing the two PTSes used in our experimental
study, and two key performance metrics of a PTS.

2.1.1 LSM-Trees. LSM-Trees [55] have two main components: an
in-memory component, called memtable, and a disk component.
Incoming writes are buffered in the memtable. Upon reaching its
maximum size, the memtable is flushed onto the disk component,
and a new, empty memtable is set up. The disk component is orga-
nized in levels 𝐿1, · · · , 𝐿𝑁 , with progressively increasing sizes. 𝐿1
stores the memtables that have been flushed. Each level 𝐿𝑖 , 𝑖 > 1,
organizes data in sorted files that store disjoint key ranges. When
𝐿𝑖 is full, part of its data is pushed to 𝐿𝑖+1 through an operation
called compaction. Compaction merges data from one level to the
next, and discards older versions of duplicate keys, to maintain
disjoint key ranges in each level.

2.1.2 B+Trees. B+Trees [14] are composed of internal nodes and
leaf nodes. Leaf nodes store key-value data. Internal nodes contain
information needed to route the request for a target key to the
corresponding leaf. Writing a key-value pair entails writing to the
appropriate leaf node, potentially splitting it in two. A key-value
write may also involve modifying the internal nodes to update
routing information, or to perform re-balancing of the tree.

2.1.3 Application-level write amplification. Block size constraints
and internal operations, such as flushing and compactions in LSM-
Trees and internal node updating in B+Trees, result in extra writes
to persistent storage. These extra writes are detrimental to perfor-
mance because they reduce the useful SSD bandwidth, resulting in
lower overall throughput and higher latencies [3, 39, 45, 64]. We
define application-level write amplification (WA-A) as the ratio
between the overall data written by the PTS (which considers both
application data and internal operations) and the amount of appli-
cation data written. WA-A is depicted in the left part of Figure 1.
WA-A has a minimum value of 1, corresponding to the ideal case
where the PTS writes no extra data in addition to the user key-value
pairs.

365

2.1.4 Space amplification. A PTS maintains extra data in addition
to the bare key-value pairs of the dataset. LSM-Trees, for example,
store multiple values of the same key in different levels. B+Trees
store routing information in internal nodes, and may reserve some
buffers to implement particular update policies [9]. Space amplifica-
tion captures the storage overhead incurred by a PTS to store such
additional data and metadata. Space amplification is defined as the
ratio between the amount of bytes that the PTS occupies on the
drive and the size of the raw key-value dataset. Space amplification
is greater than or equal to 1, where a value of 1 indicates the ideal
case where the PTS storage overhead is 0. Space amplification is
a function of the design of the PTS and of its parameterization
(e.g., number of levels in a LSM-Tree), and is independent of the
underlying storage medium.

2.2 Flash SSDs
In this section we describe the internal architecture of flash SSDs,
as well as key concepts relevant to their performance dynamics.

2.2.1 Architecture. Flash-based SSDs organize data in pages, which
are combined in blocks. A prominent characteristic of flash memory
is that pages do not support in-place updates of the pages. A page
needs to be erased before it can be programmed (i.e., set to a new
value). The erase operation is performed at the block level, so as
to amortize its cost. Flash translation layers (FTLs) [46] hide such
idiosyncrasies of the medium. In general, an FTL performs writes
out-of-place, in a log-structured fashion, and maintains a mapping
between logical and physical addresses. When space runs out, a
garbage collection process selects some memory blocks, relocates
their valid data, and then erases the blocks.

In the remainder of the paper, for the sake of brevity, we use the
term SSD to refer to a flash SSD.

2.2.2 Over-provisioning. Over-provisioning is a key technique used
to enable garbage collection and to reduce the amount of data that
an SSD relocates internally. Over-provisioning reserves part of the
physical storage capacity of the SSD to store blocks that are used
in the garbage collection process. SSD manufacturers always im-
plement hardware over-provisioning in an SSD, by exposing only
part of the physical capacity of the SSD to the upper layers, and
reserving the rest as spare blocks used for garbage collection. Users
can further implement a software over-provisioning, by ensuring
that a portion of the logical block address (LBA) space is never
written. This is typically achieved by erasing all the blocks of an
SSD, and by creating at least one partition that is never written
to. The over-provisioning of an SSD is, hence, independent of the
PTS that is deployed on it. However, as we shall see, the implemen-
tation of a PTS may lead to subtle dynamics that are comparable
to implementing software over-provisioning. This is achieved by
programmatically restricting the LBAs that the PTS writes to.

2.2.3 Device-level write amplification. Garbage collection reduces
the performance of the SSD as it leads to internal re-writing of
data in an SSD. We define device-level write amplification (WA-D)
as the ratio between the amount of data written to flash memory
(including the writes induced by garbage collection) and the amount
of host data sent to the device. WA-D has a minimum value of 1,
which corresponds to an application that performs sequential writes

(excluding the cases where the SSD firmware performs compression,
which can lead to WA-D values lower than 1). In our setting, a
purely random write workloads achieves a WA-D of approximately
3.3.WA-D is depicted in the right part of Figure 1.

3 EXPERIMENTAL SETUP
This section describes our experimental setup, which includes the
PTS systems we benchmark, the hardware on which we deploy
them, and the workloads we consider.

3.1 Systems
We consider the RocksDB [27] and WiredTiger [52] key-value (KV)
stores, which implement, respectively, an LSM-Tree and B+Tree.
Both are mature systems widely used on their own and as building
blocks of other data management systems. We configure RocksDB
and WiredTiger to use small (10 MB) in-memory page caches and
direct I/O, so that the dataset does not fit into RAM, and both KV
and internal operations are served from secondary storage.

3.2 Workloads
We consider different workloads with different read/write mixes
(write-only and 50/50) and different sizes of the values of the keys
(4000B and 128B). We use a default workload for most of the ex-
periments, and then we consider variations by changing one of
its parameters. The default dataset is composed of 50M KV pairs,
with 16 byte keys and 4000 byte values. The size of the dataset
is ≈200 GB, which represent ≈50% of the capacity of the storage
device. Before each experiment we ingest all KV pairs in sequential
order. The default workload we consider is a write-only workload,
where one user thread updates existing KV pairs according to a
uniform random distribution. Despite the fact that read operations
also induce nontrivial performance dynamics [4], we primarily
consider a write-only workload to focus as much as possible on
the performance dynamics that stem from writing data, which is
the operation that modifies the internal state of the SSD and of
the PTSes. We use a single user thread to avoid the performance
dynamics caused by concurrent data accesses. Concurrency control
techniques in PTSes are a complex topic that is outside the scope
of this paper [40].

3.3 Metrics
To demonstrate the pitfalls, we analyze several application, system
and hardware performance metrics.
i) KV store throughput, i.e., the number of operations per second
completed by the KV store.
ii) Device throughput, i.e., the amount of data written per second
to the drive as observed by the OS. The device throughput is often
used to measure the capability of a system to utilize the available
I/O resources [39]. We measure device throughput using iostat.
iii) User-level write amplification measured as the ratio between the
device write throughput and the product of the KV store’s through-
put times the size of a KV pair. The device write throughput also
includes additional metadata writes performed by the filesystem,
which we find to be negligible with respect to the writes of the PTS.

366

 0

 5

 10

 15

 0 30 60 90 120 150 180 210
 0

 100

 200

 300

 400

T
h
ro

u
g

h
p

u
t

(K
o
p

s
/s

)

T
h
ro

u
g

h
p
u

t
(M

B
/s

)

Time (min)

Device: writes
RocksDB

 reads

(a) RocksDB: KV store and device throughput.

 0

 0.5

 1

 1.5

 0 30 60 90 120 150 180 210
 0

 50

 100

 150

T
h
ro

u
g

h
p

u
t

(K
o
p

s
/s

)

T
h
ro

u
g

h
p
u

t
(M

B
/s

)

Time (min)

Device: writes
WiredTiger

 reads

(b) WiredTiger: KV store and device throughput.

 1

 2

 3

 0 30 60 90 120 150 180 210
 0

 5

 10

W
A

-D

W
A

-A

Time (min)

WA-D WA-A

(c) RocksDB: Application and device-level WA.

 1

 2

 3

 0 30 60 90 120 150 180 210
 0

 5

 10

W
A

-D

W
A

-A

Time (min)

WA-D WA-A

(d) WiredTiger: Application and device-level WA.

Figure 2: Difference between steady state and bursty performance (on a trimmed SSD) in RocksDB (left) andWiredTiger (right).
Steady-state performance differs from the initial one (top) because of the change in write amplification (bottom).

iv) Application-level write amplification measured via the SMART
attributes of the device. Specifically, we take the ratio of the at-
tributes nand_bytes_written and host_bytes_written that we
obtain using the nvme intel smart-log-add utility.
v) Space amplification, which we obtain by taking the ratio of the
disk total utilization and the cumulative size of the KV pairs in the
dataset. Also this metric factors in the overhead posed by the filesys-
tem, which is negligible with respect to the several GB datasets that
we consider.

For the sake of readability of the plots, unless stated otherwise, we
report 10-minutes average values when plotting the evolution of a
performance metric over time.

3.4 State of the drive
We experiment with two different initial conditions of the internal
state of the drive.
• Trimmed.All blocks of the device are erased (using the blkdiscard
utility). Hence, initial writes are stored directly into free blocks and
do not incur additional overhead (no WA-D occurs), while updates
after the free blocks are exhausted incur internal garbage collec-
tion. A trimmed device exhibits performance dynamics close (i.e.,
modulo the wear of the storage medium) to the ones of a mint
factory-fresh device. This setting is representative of bare-metal
standalone deployments, where a system administrator can reset
the state of the drive before deploying the KV store, and the drive
is not shared with other applications.
• Preconditioned. The device undergoes a preliminary writing phase
so that its internal state resembles the state of a device that has
been in use. To this end, we first write the whole drive sequentially,
to ensure that all logical addresses have associated data. Then,
we issue random writes for an amount of bytes that is twice the

size of the disk, so as to trigger garbage collection. In this setting
even the first write operation issued by an application towards
any page is effectively an over-write operation. This setting is
representative of 𝑖) consolidated deployments, e.g., public clouds,
where multiple applications share the same physical device, or 𝑖𝑖)
standalone deployments with an aged filesystem.

These two configurations represent the two endpoints of the spec-
trum of the initial conditions of the drive, concerning the state of
the drive’s block. In a real-world deployment the initial conditions
of the drive would be somewhere in-between these two endpoints.

3.5 Hardware
We use a machine equipped with an Intel Xeon CPU E5-2630 v4
@ 2.20GHz (20 physical cores, without hyper-threading) and 126
GB of RAM. The machine runs Ubuntu 18.04 with a 4.15 generic
Linux kernel1. The machine’s persistent storage device is a 400
GB Intel p3600 enterprise-class SSD [17]. Unless stated otherwise,
we setup a single partition on the drive, which takes the whole
available space. We mount an ext4 filesystem configured with the
nodiscard parameter [15].

4 BENCHMARKING PITFALLS
This section discusses the benchmarking pitfalls in detail. For each
pitfall we 𝑖) first give a brief description; 𝑖𝑖) then discuss the pitfall
in depth, by providing experimental evidence that demonstrates
the pitfall itself and its implications on the performance evaluation

1Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries. The registered trademark
Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other product
and service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on ibm.com/trademark.

367

 0

 10

 0 30 60 90 120 150 180 210

W
A

-A

Time (min)

cumul.
 0

 30
 60
 90

W
A

-A 60s

 0
 30
 60
 90

W
A

-U 1s

Figure 3: WA-A in RocksDB over time. Computing WA-A
with 1-second (top) or 60-second (mid) averages leads to
noisy results, due to the bursty nature of the LSM-Tree com-
paction process. We suggest computing WA-A using cumu-
lative values to obtain more stable results (bottom).

process; and 𝑖𝑖𝑖) finally outline guidelines on how to avoid the
pitfall in research studies and production systems.

4.1 Steady-state vs. bursty performance
Pitfall 1: Running short tests. Because both the PTS and SSD
performance vary over time, short-lived tests are unable to capture how
the systems will behave under a continuous (non-bursty) workload.
Discussion. Figure 2 shows the KV store and device throughput
(top), and the WA-D and WA-A (bottom) over time, for RocksDB
(left) and WiredTiger (right). These results refer to running the two
systems on a trimmed SSD. The plots do not show the performance
of the systems during the initial loading phase. The pictures show
that the two PTSes exhibit an initial transient phase during which
the dynamics and the performance indicators may widely differ
from the ones observed at steady-state. Hence, taking early mea-
surements of a data store’s performance may lead to a substantially
wrong performance assessment.

Figure 2a shows that measuring the performance of RocksDB
in the first 15 minutes would report a throughput of 11-8 KOps/s,
which is 3.6-2.6 times higher than the 3 KOps/s that RocksDB is
able to sustain at steady-state. In the first 15 minutes, the device
throughput of RocksDB is between 375 and 300 MB/s, which is
more than 3 times the throughput sustained at steady-state.

Figure 2c sheds light on the causes of such performance degrada-
tion. The performance of RocksDB decreases over time for the effect
of the increased write amplification, both at the PTS and device
level. WA-A increases over time while the levels of the LSM-Tree
fills up, and its curve flattens once the layout of the LSM tree has sta-
bilized. WA-D increases over time because of the effect of garbage
collection. The initial value of WA-D is close to one, because the
SSD is initially trimmed, and keys are ingested in order during the
initial data loading, which results in RocksDB issuing sequential
writes to the drive. The compaction operations triggered over time,
instead, do not result in sequential writes to the SSD flash cells,
which ultimately lead to a WA-D slightly higher than 2.

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

C
D

F

LBA (normalized) sorted by decreasing # writes

RocksDB
WiredTiger

Figure 4: CDF of the LBA write probability in RocksDB and
WiredTiger. The vertical dotted line indicateswhere theCDF
corresponding to WiredTiger reaches value 1, and indicates
that WiredTiger does not write to ≈ 45% of the LBAs. This
has the equivalent effect of increasing the over-provisioning
by ≈ 55% of the LBAs.

WiredTiger exhibits performance degradation as well, as shown
in Figure 2b. The performance reduction in WiredTiger is lower
than in RocksDB for three reasons. 𝑖) WA-A is stable over time,
because updating the B+Tree to accommodate new application
writes incurs an amount of extra writes that does not change over
time. 𝑖𝑖) The increase in WA-D is lower than in RocksDB: WA-D
reaches at most the value of 1.7, and converges to 1.5. We analyze
in more detail the WA-D of WiredTiger in the next section. 𝑖𝑖𝑖)
WiredTiger is less sensitive to the performance of the underlying
device because of synchronization and CPU overheads [39].
Guidelines. Researchers and practitioners should distinguish be-
tween steady-state and bursty performance, and prioritize reporting
the former. In light of the results portrayed by Figure 2, we advo-
cate that, to detect steady-state behavior, one should implement a
holistic approach that encompasses application-level throughput,
WA-A, and WA-D. Techniques such as CUSUM [56] can be used to
detect that the values of these metrics do not change significantly
for a long enough period of time.

To measure throughput we suggest using an average over long
periods of time, e.g., in the order of ten minutes. In fact, it is well
known that PTSes are prone to exhibit large performance variations
over short period of time [39, 44, 64] –and our experiments on
RocksDB confirm these results. Furthermore, we suggest expressing
the WA-A at time 𝑡 as the ratio of the cumulative application writes
up to time 𝑡 and the cumulative host writes up to time 𝑡 . This is
aimed at avoiding oscillations that would be obtained if measuring
the WA-D over small time windows, as we show in Figure 3.

Finally, if WA-D cannot be computed directly from SMART at-
tributes, then we suggest, as a rule of thumb, considering the SSD as
having reached steady-state after the cumulative host writes accrue
to at least 3 times the capacity of the drive. The first device write
ensures that the drive is filled once, so that each block has data
associated with it. The second write triggers garbage collection,
which overwrites the block layout induced by the initial filling of
the dataset. The third write ensures that the garbage collection
process approaches steady state, and is also needed to account for
the (possibly unknown) amount of hardware over-provisioning of
the SSD.

368

 0

 5

 10

 15

 20

 0 30 60 90 120 150 180 210

T
h

ro
u
g

h
p

u
t
(K

o
p

s
/s

)

Time (min)

Trimmed Preconditioned

(a) RocksDB: throughput.

 0

 0.5

 1

 1.5

 2

 0 30 60 90 120 150 180 210

T
h

ro
u
g

h
p

u
t
(K

o
p

s
/s

)

Time (min)

Trimmed Preconditioned

(b) WiredTiger: throughput.

 1

 2

 3

 0 30 60 90 120 150 180 210

W
A

-D

Time (min)

Trimmed Preconditioned

(c) RocksDB: device-level WA.

 1

 2

 3

 0 30 60 90 120 150 180 210

W
A

-D

Time (min)

Trimmed Preconditioned

(d) WiredTiger: device-level WA.

Figure 5: Performance achieved over time by RocksDB (left) andWiredTiger (right) depending on the initial conditions of the
SSD (trimmed versus preconditioned). The initial conditions of the drive affect throughput (top), potentially even at steady-
state, because they affect the SSD garbage collection dynamics and the corresponding WA-D (bottom).

4.2 Analysis of WA-D
Pitfall 2: Not analyzingWA-D. OverlookingWA-D leads to partial
or even inaccurate performance analysis.
Discussion. Many performance analyses only consider WA-A,
which can lead to inaccurate conclusions. We advocate considering
WA-D when discussing the performance of a PTS for three main
reasons (in addition to being fundamental to identifying steady
state, as discussed previously).

𝑖)WA-D directly affects the throughput of the device, which strongly
correlates with the application-level throughput. Analyzing WA-D
explains performance variations that cannot be inferred from the
analysis of the WA-A alone. Figure 2b shows that WiredTiger ex-
hibits a throughput drop at around the 50th minute mark, despite
the fact Figure 2d shows no variations in WA-A. Figure 2d shows
that at the 50th minute mark WA-D increases from its initial value
of 1, indicating that the SSD garbage collection process has started.
This increase in WA-D explains the reduction in SSD throughput,
which ultimately determines the drop in the throughput achieved
by WiredTiger.

The analysis of WA-D also helps explaining the performance
drops in RocksDB, shown in Figure 2a. Throughout the test, the
KV throughput drops by a factor of ≈4, from 11 to 2.5 KOps/s. Such
a degradation is not consistent with the ≈2 increase of WA-A and
the slightly increased CPU overhead caused by internal LSM-Tree
operations (most of the CPUs are idle during the test). The doubling
of the WA-D explains the device throughput degradation, which
contributes to the application-level throughput loss.

𝑖𝑖) WA-D is an essential measure of the I/O efficiency of a PTS.
One needs to multiply WA-A by WA-D to obtain the end-to-end
write amplification – from application to memory cells– incurred
by a PTS on flash. This is the write amplification value that should

be used to quantify the I/O efficiency of a PTS on flash, and its
implications on the lifetime of an SSD. Focusing on WA-A alone, as
done in the vast majority of PTS performance studies, may lead to
incorrect conclusions. For example, Figure 2 (bottom) shows that
RocksDB incurs a steady-state WA-A of 12, which is higher than
the WA-A achieved by WiredTiger by a factor of 1.2×. However,
the end-to-end write amplification of RocksDB is 25, which is 2.1×
higher than WiredTiger’s.

𝑖𝑖𝑖) WA-D measures the flash-friendliness of a PTS. A low WA-D
indicates that a PTS generates a write access that does not incur
much garbage collection overhead in the SSD. Hence, measuring
WA-D enables the fitness of a PTS for flash SSD deployments to
be quantified, and the effectiveness of flash-conscious designs to
be verified. For example, LSM-Trees are often regarded as flash-
friendly due to their highly sequential writes, while B+Trees are
considered less flash-friendly due to their random write access
pattern. The direct measurement of WA-D in our tests, however,
capsizes this conventional wisdom, showing that RocksDB and
WiredTiger achieve a WA-D of around 2.1 and 1.5, respectively. As
a reference, a pure random write workload, also targeting 60% of
the device capacity, has a WA-D of 1.4 [66].

To understand the causes of this surprising result, we monitor
the host write access pattern generated by RocksDB andWiredTiger
using blktrace. Figure 4 reports the CDF of the page access fre-
quency in the two systems. We observe that in WiredTiger 46%
of the pages are not written (0 write accesses). This indicates that
WiredTiger only writes to a limited portion of the logical block
address (LBA) space, corresponding to the LBAs that initially store
the ≈ 200 GB of KV pairs plus some small extra capacity, i.e., ≈ 50%
of the SSD’s capacity in total. This data access pattern corresponds
to having only 50% of the LBAs with associated valid data, since

369

 5

0.37 0.5 0.62

W
A

-D

Dataset size / SSD capacity

RocksDB trim WiredTiger trim RocksDB prec WiredTiger prec

 0

 1

 2

 3

 4

0.25 0.37 0.5 0.62T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

)

Dataset size / SSD capacity

3
.3

2
.2

1
.8

1
.7

1
.0

1
.0

1
.0

0
.9

2
.5

2
.2

1
.8

1
.7

0
.9

0
.8

0
.8

0
.7

(a) Throughput.

 0

 1

 2

 3

0.25 0.37 0.5 0.62

W
A

-D

Dataset size / SSD capacity

1
.7

2
.0 2

.3

2
.2

1
.1 1
.2 1
.3 1

.6

1
.9 2

.2 2
.3 2
.3

1
.9 2

.2 2
.3 2

.6

(b) WA-D.

 5

 7.5

 10

 12.5

0.25 0.37 0.5 0.62

W
A

-A

Dataset size / SSD capacity

1
1
.0 1
1
.7

1
1
.9

1
2
.3

9
.8

1
0
.0

1
0
.1

1
0
.2

1
0
.6

1
1
.3

1
1
.4 1
2
.3

9
.8

1
0
.0

1
0
.1

1
0
.2

(c) WA-A.

Figure 6: Impact of the size of the dataset inRocksDBandWiredTiger,with preconditioned and trimmeddevice. Larger datasets
lead to a lower throughput (a). This is mostly due to an increase in WA-D (b), since the WA-A only increases mildly (c).

the SSD has been initially trimmed. Because the SSD garbage col-
lection only relocates valid data, this corresponds to having ≈ 200
GBs of software over-provisioning (on top of the hardware over-
provisioning), which leads to a lowWA-D. In the following sections
we provide additional insights on the effects of such different LBA
access patterns on performance, also taking into account the initial
state of the SSD (Section 4.3), the size of the dataset (Section 4.4),
and software over-provisioning (Section 4.6).
Guidelines. The analysis of the WA-D should be a standard step
in the performance study of any PTS. Such analysis is fundamental
to properly measure the flash-friendliness and I/O efficiency of
alternative systems. In fact, the analysis of WA-D leads to important
insights on the internal dynamics and performance of a PTS, as we
also discuss further in the following sections.

4.3 Initial conditions of the drive
Pitfall 3: Overlooking the internal state of the SSD. Not con-
trolling the initial condition of the SSD may lead to biased and non-
reproducible performance results.
Discussion. Figure 5 shows the performance over time of RocksDB
(left) and WiredTiger (right), when running on a trimmed SSD and
on a preconditioned one. The top row reports KV throughput, and
the bottom one reports WA-D. The plots do not show the perfor-
mance of the systems during the initial loading phase.

The plots show that the initial state of the SSD heavily affects
the performance of a PTS and that, crucially, the steady-state per-
formance of a PTS can greatly differ depending on the initial state
of the drive. This is surprising, as one would expect the internal
state of an SSD to converge to the same configuration, if running
the same workload for long enough, and hence to deliver the same
steady-state performance regardless of the initial state of the SSD.

This phenomenon is caused by how the LBA access patterns of
RocksDB and WiredTiger intertwine with the SSD garbage collec-
tion mechanism as a function of the initial state of the drive. As
discussed earlier, WiredTiger writes only to roughly 50% of the
available LBA space. In a trimmed device, this means that the SSD
benefits from an extra software over-provisioning of 50%, which
greatly reduces WA-D. In a preconditioned device, on the other
hand, all LBAs have associated valid data, which means that the
garbage collection process has only the hardware over-provisioning

available, and needs to relocate more valid pages when erasing a
block, leading to a higher WA-D.

The difference in WA-D, and hence in performance, depending
on the initial state of the SSD is much less visible in RocksDB. This
is because 𝑖) the LSM tree utilizes more capacity than a B+Tree and
𝑖𝑖) RocksDB writes to the whole range of the LBA space. Hence,
the initial WA-D for RocksDB depends heavily on the initial device
state; however, all LBAs are eventually over-written and thus the
WA-D converges to roughly the same value, regardless of the initial
state of the drive.

Our results and analysis lead to two important lessons.
𝑖) The I/O efficiency of a PTS on an SSD is not only amatter of the

high level design of the PTS, but also of its low-level implementation.
Our experiments show that the benefits onWA-D given by the large
sequential writes of the LSM implementation of RocksDB are lower
than the benefits of the B+Tree implementation of WiredTiger,
despite the more random write access pattern of B+Trees.

𝑖𝑖) Not controlling the initial state of the SSD can potentially
jeopardize two key properties of a PTS performance evaluation:
fairness and reproducibility. The fairness of a benchmarking process
can be compromised by simply running the same workload on two
different PTSes back to back. The performance of the second PTS
is going to be heavily influenced by the state of the SSD that is
determined by the previous test with the other PTS. The lack of
fairness can lead a performance engineer to pick a sub-optimal PTS
for their workload, or a researcher to report incorrect results.

The reproducibility of a benchmarking process can be compro-
mised because running two independent tests of a PTS with the
same workload and on the same hardware may lead to substantially
different results. For production engineers this means that the per-
formance study taken on a test machine may differ widely with
respect to the performance observed in production. For researchers,
it means that it may be impossible to replicate the results published
in another work.
Guidelines. We recommend controlling and reporting the initial
state of the SSD before every test. This state depends on the tar-
get deployment of the PTS. For a performance engineer, such a
state should be as similar as possible to the one observed in the
production environment, which also depends on other applications
possibly collocated with the PTS. We suggest researchers precon-
dition the SSD as described in Section 3.4. In this way, they can
evaluate the PTS in the most general case possible, thus broadening

370

 0
 20
 40
 60
 80

 100

0.25 0.37 0.5 0.62 0.75 0.88

D
is

k
 u

ti
liz

a
ti
o

n
 (

%
)

Dataset size / SSD capacity

4
7

6
1

7
4

8
8

2
9

4
3

5
7

7
1

8
5

9
9

(a) Space utilization.

 1
 1.2
 1.4
 1.6
 1.8

 2

0.25 0.37 0.5 0.62 0.75 0.88

S
p

a
c
e

 a
m

p
lif

ic
a

ti
o

n

Dataset size / SSD capacity

RocksDB

1
.8

6

1
.6

1

1
.4

6

1
.3

9

WiredTiger

1
.1

5

1
.1

3

1
.1

3

1
.1

2

1
.1

2

1
.1

2

(b) Space amplification.

 5

 10

 15

 20

 25

 1 2 3 4 5

T
a
rg

e
t
th

ro
u
g
h
p
u
t

(K
o
p
s
/s

)

Total dataset size (TB)

WiredTiger

cheaper

Same

cost

RocksDB

cheaper

(c) Storage cost comparison.

Figure 7: Space amplification inRocksDB andWiredTiger (both for trimmed and preconditioned SSD), and its effects on storage
costs (preconditioned SSD). RocksDB runs out of space in the two largest datasets. RocksDB uses more space thanWiredTiger
to store a dataset of a given size (a), leading to a higher space amplification (b). The heatmap (c) reports the system that requires
fewer drives to store a given dataset while achieving a target throughput –hence incurring a lower storage monetary cost.

the scope of their results. To save on the preconditioning time, the
SSD can be trimmed, provided that one checks that the steady-state
performance of the PTS does not substantially differ from the one
observed on a preconditioned drive.

4.4 Dataset size
Pitfall 4: Testing with a single dataset size. The amount of data
stored by the SSD changes its behavior and affects overall performance.
Discussion. Figure 6 reports the steady-state throughput (left),
WA-D (middle), and WA-A (right) of RocksDB and WiredTiger
with datasets whose sizes span from 0.25 to 0.88 of the capacity of
the SSD (from 100GB to 350GB of KV pairs). We omit the results
for RocksDB on the two biggest datasets because it runs out of
space. The figure reports results both with a trimmed and with a
preconditioned SSD.

Figure 6a shows that the throughput of two systems is affected
by the size of the dataset that they manage, although to a different
extent and in different ways depending on the initial state of the
SSD. By contrasting Figure 6b and Figure 6c we conclude that the
performance degradation brought by the larger dataset is primarily
due to the idiosyncrasies of the SSD: larger datasets lead to more
valid pages in each flash block, which increases the amount of data
being relocated upon performing garbage collection, i.e., the WA-D.

Changing the dataset size affects the comparison between the
two systems both quantitatively and qualitatively. We also note that
the comparison among the two systems is affected by the initial
condition of the drive. On a trimmed SSD, RocksDB achieves a
throughput that is 3.3× higher than WiredTiger’s on the smallest
dataset. On the largest dataset, however, this performance improve-
ment shrinks to 1.9×. Moreover, WiredTiger exhibits a lower WA-D
across the board, due to the LBA access pattern discussed in the
previous section. On a preconditioned SSD, the speedup of RocksDB
over WiredTiger still depends on the size of the dataset, but it is
lower in absolute values than on a trimmed SSD, ranging from
2.7× on the smallest dataset to 2.57× on the largest one. Moreover,
whether RocksDB has a better WA-D than WiredTiger depends on
the dataset size. In particular, theWA-D of RocksDB andWiredTiger
are approximately equal when storing datasets whose sizes are up
to half of the drive’s capacity. Past that point, RocksDB’s WA-D

is sensibly lower than WiredTiger’s (2.3 versus 2.6). This happens
because the benefits of WiredTiger’s LBA access pattern decrease
with the size of the dataset (and hence of the range of LBAs storing
KV data) and the reduced over-provisioning due to preconditioning.
Guidelines. We suggest that production engineers benchmark
alternative PTSes with a dataset of the size that is expected in
production, and refrain from testing with scaled-down datasets for
the sake of time. We suggest researchers experiment with different
dataset sizes. This suggestion has a twofold goal. First, it allows a
researcher to study the sensitivity of their PTS design to different
device utilization values. Second, it disallows evaluations that are
purposely or accidentally biased in favor of one design over another.

4.5 Space amplification
Pitfall 5: Not accounting for space amplification. The space
utilization overhead of a PTS determines its storage requirements and
deployment monetary cost.
Discussion. PTSes frequently trade additional space for improved
performance, and understanding their behavior depends on under-
standing these trade-offs. Figure 7a reports the total disk utilization
incurred by RocksDB and WiredTiger depending on the size of the
dataset. The disk utilization includes the overhead due to filesystem
meta-data. Because RocksDB frequently writes and erases many
large files, its disk utilization varies sensibly over time. The value we
report is the maximum utilization that RocksDB achieves. Figure 7b
reports the space amplification corresponding to the utilization
depicted in Figure 7a.

WiredTiger uses an amount of space only slightly higher than
the bare space needed to store the dataset, and achieves a space
amplification that ranges from 1.15 to 1.12. RocksDB, instead, re-
quires much more additional disk space to store the several levels
of its LSM-Tree. Overall, RocksDB achieves an application space
amplification ranging between 1.86, with the smallest dataset we
consider, to 1.39, with the biggest dataset that it can handle 2.

These results show that space amplification plays a key role
in the performance versus storage space trade-off. Such trade-off

2The disk utilization in RocksDB depends on internal parameters such as the number and the sizes
of the LSM-Tree levels [28]. It is possible to achieve a lower space amplification than the one we
report, but with a higher compaction overhead and lower throughput.

371

 0

 1

 2

 3

 4

 5

0.25 0.37 0.5 0.62

W
A

-D

RocksDB trim
WiredTiger trim

RocksDB prec
WiredTiger prec

 0

 1

 2

 3

 4

No OP Extra OP

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

)

1
.7

9

3
.2

7

0
.9

6

0
.9

4

1
.7

7

3
.3

0

0
.7

6

0
.8

7

(a) Throughput.

 0

 1

 2

 3

No OP Extra OP

W
A

-D

2
.3

1
.4

1
.3

1
.3

2
.3

1
.5

2
.3

1
.7

(b) WA-D.

Figure 8: Impact of extra SSD over-provisioning (OP). Extra
OPmay improve throughput (a) andWA-D (b), at the cost of
reducing the amount of data that the SSD can store.

affects the total storage cost of a PTS deployment, given an SSD
drive model, a target throughput, and total dataset size. In fact, a
PTS with a low space amplification may fit the target dataset in
a smaller and cheaper drive with respect to another PTS with a
higher write amplification, or can index more data given the same
capacity, requiring fewer drives to store the whole dataset.

To showcase this last point, we perform a back-of-the-envelope
computation to identify which of the two systems require fewer
SSDs (and hence incur a lower storage cost) to store a given dataset
and at the same time achieve a target throughput. We use the
throughput and disk utilization values that we measure for our
SSD (see Figure 6a and Figure 7a). For simplicity, we assume one
PTS instance per SSD, and that the aggregate throughput of the
deployment is the sum of the throughputs of the instances. Fig-
ure 7c reports the result of this computation. Despite having a lower
per-instance throughput, the higher space efficiency of WiredTiger
makes it preferable over RocksDB in scenarios with a large dataset
and a relatively low target throughput. This configuration repre-
sents an important class of workloads, given that with the ever-
increasing amount of data being collected and stored, many appli-
cations begin to be storage capacity-bound rather than throughput-
bound [11].
Guidelines. The experimental evaluation of a PTS should not
focus only on performance, but should include also space amplifi-
cation. For research works, analyzing space amplification provides
additional insights on the performance dynamics and trade-offs of
the design choices of a PTS, and allows for a multi-dimensional
comparison among designs. For production engineers, analyzing
space amplification is key to computing the monetary cost of pro-
visioning the storage for a PTS in production, which is typically
more important than maximum performance [53].

As a final remark, we note that this pitfall applies also to PTSes
not deployed over an SSD, and hence our considerations apply more
broadly to PTSes deployed over any persistent storage medium.

4.6 SSD over-provisioning
Pitfall 6: Overlooking SSD software over-provisioning. Over-
provisioning the SSD may lead to a more favorable capacity versus
performance trade-offs.

 5

 10

 15

 20

 25

 1 2 3 4 5

T
a

rg
e

t
th

ro
u

g
h

p
u

t
(K

o
p

s
/s

)

Total dataset size (TB)

No OP

cheaper

Same

cost

Extra OP

cheaper

Figure 9: Storage cost comparison using RocksDB with or
without extra over-provisioning (OP) on a preconditioned
SSD. The heatmap shows the setting that requires fewer
drives to store a given dataset while achieving a target
throughput –hence incurring a lower storagemonetary cost.

Discussion. Figure 8 compares the steady-state throughput (left)
and WA-D (right) achieved by RocksDB and WiredTiger in two set-
tings: 𝑖) the default one in which the whole SSD capacity is assigned
to the disk partition accessible by the filesystem underlying the
PTS, and 𝑖𝑖) one in which some SSD space is not made available to
the filesystem underlying the PTS, and is instead assigned as extra
over-provisioning to the SSD. Specifically, in the second setting we
trim the SSD and assign a 300GB partition to the PTS. Hence, the
SSD has 100GB of trimmed capacity that is not visible to the PTS.
100GB corresponds to half of the free capacity of the drive once
the 200 GB dataset has been loaded. For both settings we consider
the case in which the PTS partition remains clean after the initial
trimming, and the case in which it is preconditioned.

Extra over-provisioning improves the performance of RocksDB
by a factor of 1.83×. This substantial improvement is caused by
a drastic reduction of WA-D, that drops from 2.3 to 1.4, and it
applies to RocksDB regardless of the initial state of the PTS partition,
for the reason discussed in Section 4.3. The impact of extra over-
provisioning is much less evident in WiredTiger. In the trimmed
device case, the extra over-provisioning has no effect onWiredTiger.
This happens because WiredTiger writes only to a certain range of
the LBA space (see Figure 4). Hence, all other trimmed blocks act

 0
 5

 10
 15
 20
 25
 30

SSD1 SSD2 SSD3

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

)

RocksDB

8
.7

1
.3

2
4

.1

WiredTiger

1
.2 1
.6 2
.9

Figure 10: Impact of the SSD type on throughput. The type of
SSD significantly affects the absolute performance achieved
by RocksDB andWiredTiger, and can even determine which
of them achieves the higher throughput.

372

 0

 10

 20

 30

 0 30 60 90

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

)

Time (min)

SSD1 SSD2 SSD3

(a) RocksDB.

 0
 1
 2
 3
 4
 5

 0 30 60 90

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

)

Time (min)

SSD1 SSD2 SSD3

(b) WiredTiger.

Figure 11: Throughput (1 minute average) of RocksDB (left) and WiredTiger (right) over time using SSDs based on different
technologies. The type of SSD influences heavily the throughput variability of RocksDB, and much less that of WiredTiger.

as over-provisioning, regardless of whether they belong to the PTS
partition or the extra over-provisioning one. On the preconditioned
device, instead, all blocks of the PTS partition have data associated
with them, so the only software over-provisioning is given by the
trimmed partition. This extra over-provisioning reducesWA-D from
1.7 to 1.3, yielding a throughput improvement of 1.14×.

Allocating extra over-provisioning can be an effective technique
to reduce the number of PTS instances needed in a deployment (and
hence reduce its storage cost), because it increases the throughput of
the PTS without requiring additional hardware resources. However,
extra over-provisioning also reduces the amount of data that a single
drive can store, which potentially increases the amount of drives
needed to store a dataset and the storage deployment cost. To assess
in which use cases using extra over-provisioning is the most cost-
effective choice, we perform a back-of-the-envelope computation
of the number of drives needed to provision a RocksDB deployment
given a dataset size and a target throughput value. We perform
this study on RocksDB because it benefits the most from extra
over-provisioning. We use the same simplifying assumptions that
we made for the previous similar analysis. Figure 9 reports the
results of our computation. As expected, extra over-provisioning is
beneficial for use cases that require high throughput for relatively
small datasets. For larger datasets with relatively low performance
requirements, it is more convenient to allocate as much of the
drive’s capacity as possible to RocksDB.
Guidelines. It is known that PTSes have many tuning knobs that
affect performance [5, 22, 41]. We suggest considering SSD over-
provisioning as an additional, yet first class, tuning knob of a PTS.
SSD extra over-provisioning trades capacity for performance, and
can reduce the storage cost of a PTS deployment in some use cases.

4.7 Storage technology
Pitfall 7: Testing on a single SSD type. The performance of a
PTS heavily depends on the type of SSD used. This makes it hard to
extrapolate the expected performance when running on other drives
and also to reach conclusive results when comparing two systems.
Discussion. We exemplify this pitfall through an experiment
where we keep the workload and the RocksDB and WiredTiger
configurations constant and only swap the underlying storage de-
vice. We use three SSDs: an Intel p3600 [17] flash SSD, i.e., the drive
used for the experiments discussed in previous sections; an Intel
660 [16] flash SSD; and an Intel Optane [18]. We refer to these SSDs

as SSD1, SSD2 and SSD3, respectively, in the following discussion.
SSD3 is a high-end SSD, based on the newer 3DXP technology that
achieves higher performance than flash SSDs. We use SSD3 as an
upper bound on performance that a PTS can achieve on a flash
block device.

To try and isolate the performance impact due to the SSD technol-
ogy (i.e., architecture and underlying storage medium performance)
in the assessment of a PTS, we eliminate, as much as possible, the
other sources of performance variability that we have discussed
so far. To this end, we run a workload with a dataset that is 10×
smaller than the default one, and we trim the flash SSDs. In this
way, the effect of garbage collection in the flash SSDs is minimized,
resulting in a WA-D very close to one.

Figure 10 shows the steady-state throughput of RocksDB and
WiredTiger when deployed on the three SSDs. As can be depicted
from the plot, the performance impact changing the underlying
drive varies drastically across the two systems. Explaining these
performance variations requires gaining a deeper understanding of
the low-level design of the SSDs, which is not always achievable.

RocksDB achieves the highest throughput on SSD3, and a higher
throughput on SSD1 than on SSD2. This performance trend is
mostly determined by the write latencies of the SSDs, which are the
lowest in SSD3, and lower in SSD2 than in SSD1. Also WiredTiger
achieves the highest throughput on SSD3 but, surprisingly, it ob-
tains a higher throughput on SSD2 than on SSD1. We argue that
the reason for this performance dynamic lies in the fact that SSD2
has a larger internal cache than SSD1. Because WiredTiger per-
forms small writes, uniformly distributed over time, the cache of
SSD2 is able to absorb them with very low latency, and destages
them in the background. The larger cache of SSD2 does not yield
the same beneficial effects to RocksDB because RocksDB performs
large bursty writes, which overwhelm the cache, leading to longer
write latencies and, hence, lower throughput.

These dynamics also lead to the surprising result that either of
the two systems we consider can achieve a higher throughput than
the other, just by changing the SSD on which they are deployed.

We also observe very different performance variations for the
two systems, when deployed on different SSDs. On the one hand,
the best and worst throughputs achieved by RocksDB vary by
a factor of almost 20× (SSD2 versus SSD3). On the other hand,
they vary only by a factor of 2.4 for WiredTiger. These results
indicate that the performance comparison across PTS design points,
and the corresponding conclusions that are drawn, are strongly

373

 0

 0.5

 1

 1.5

 2

 0 30 60 90 120 150 180 210
 1

 2

 3

T
h
ro

u
g
h
p

u
t
(K

o
p

s
/s

)

W
A

-D

Time (min)

Throughput trim Throughput prec WA-D trim WA-D prec

 0
 2
 4
 6
 8

 10

 0 30 60 90 120 150 180 210
 1

 2

 3

T
h
ro

u
g

h
p
u

t
(K

o
p
s
/s

)

W
A

-D

Time (min)
(a) RocksDB, 50/50 r/w ratio.

 0

 0.5

 1

 1.5

 2

 0 30 60 90 120 150 180 210
 1

 2

 3

T
h
ro

u
g

h
p
u

t
(K

o
p
s
/s

)

W
A

-D

Time (min)
(b) WiredTiger, 50/50 r/w ratio.

 0

 100

 200

 300

 0 30 60 90 120 150 180 210
 1

 2

 3

T
h
ro

u
g
h
p
u
t

(K
o
p
s
/s

)

W
A

-D

Time (min)
(c) RocksDB, 128B values.

 0

 0.5

 1

 1.5

 0 30 60 90 120 150 180 210
 1

 2

 3

T
h
ro

u
g
h
p
u
t

(K
o
p
s
/s

)

W
A

-D

Time (min)
(d) WiredTiger, 128B values.

Figure 12: Performance of RocksDB (left) and WiredTiger (right) over time, with a preconditioned and trimmed device. The
top row refers to a workload with small (128 bytes) values. The bottom row refers to a workload with a 50/50 read/write ratio.
The pitfalls we describe apply to a broad set of workloads as long as they have a sustained write component (here we represent
pitfalls #1, #2 and #3).

dependent on the SSD employed in the benchmarks, and hence
hard to generalize.

The type of SSD also dramatically affects the performance pre-
dictability of the two systems. Figure 11 reports the throughput
of RocksDB (left) and WiredTiger (right) when deployed over the
three SSDs. To highlight the performance variability, we average the
throughput over a 1 minute interval (as opposed to the 10 minutes
used in previous plots).

The throughput of RocksDB varies widely over time, and the ex-
tent of the variability depends on the type of SSD.When using SSD1,
RocksDB suffers from throughput swings of 100%. When using
SSD2, RocksDB has long periods of time where no application-level
writes are executed at all. This happens because the large writes
performed by RocksDB overwhelm the cache of SSD2 and lead to
long stall times due to internal data destaging. On SSD3, the relative
RocksDB throughput variability decreases to 30%. WiredTiger is
less prone to performance variability, and exhibits a more steady
and predictable performance irrespective of the storage technology.
Guidelines. We recommend testing a PTS on multiple SSD classes,
preferably using devices from multiple vendors, and using multiple
flash storage technologies. This allows researchers to draw broader
and more significant conclusions about the performance of a the
design of a PTS, and to assess the “intrinsic" validity of such design,
without tying it to specific characteristics of the medium on which
the design has been tested. For a performance engineer, testing with
multiple drives is essential to identify which one yields the best
combination of storage capacity, performance and cost depending
on the target workload.

4.8 Additional workloads
In this section, we analyze two additional workloads to show that
our pitfalls also apply to workloads with different read/write mixes
and value sizes. The first workload generates a 50/50 read/write
operation mix (instead of write-only accesses). The second work-
load generates values whose size is 128B (instead of 4000B). In the
second workload, to keep the amount of data stored indexed by
the PTS constant to the one used by the previous experiments, we
increase accordingly the number of keys. We run these workloads
using both a preconditioned and a trimmed drive. For space con-
straints, we focus on the first three pitfalls. Figure 12 reports the
throughput and WA-D over time achieved by RocksDB (left) and
WiredTiger (right) for the read/write workload (top) and for the
128B values workload (bottom).
Pitfall 1. The steady-state performance can be very different from
the one observed at the beginning of the test. In themixed read/write
workload, throughput takes longer to stabilize than what we have
seen in the previous write-only experiments, as writes are less fre-
quent. This is visible by comparing Figure 12a with Figure 2a and
Figure 2c, and Figure 12b with Figure 2b and Figure 2d.
Pitfall 2. WA-D is important to explain performance dynamics.
We note that the WA-D of WiredTiger in the trimmed case with
128B values (Figure 12d) is different from the one observed for the
workload with 4000B values (Figure 2d). With 4000B values the
WA-D starts at a value close to 1, whereas with 128B values its
starting point is closer to 2. This happens because the initial data
loading leads to different SSD states depending on the size of the
KV pairs. With 4000B values, one KV pair can fill one filesystem

374

page, which is written only once to the SSD. With small values,
the same page needs to be written multiple times to pack more KV
pairs, which leads to higher fragmentation at the SSD level. Such
a phenomenon is not visible in RocksDB, because it writes large
chunks of data regardless of the size of the individual KV pairs.
Pitfall 3. The initial state of the SSD leads to different transient and
steady-state performance. As for the other workloads considered
in the paper, this pitfall applies especially to WiredTiger.

These results lead to two main considerations. First, the pitfalls we
describe apply to any workload that has a sustained write compo-
nent that modifies the internal states of the PTS and of the SSD.
Second, the extent and timing of the pitfalls vary with the work-
load. These findings reinforce our message that the performance of
PTSes and SSDs are intrinsically intertwined, and must be analyzed
carefully and jointly to draw appropriate conclusions.

We finally note that some of our pitfalls are also relevant for
read-dominated and even read-only workloads, especially the ones
that do not depend strongly on the write intensity of the workload,
i.e., the ones regarding the dataset size, the space amplification, and
the storage technology.

5 RELATEDWORK
Performance analyses of SSD-based storage systems. Bench-
marking the performance of PTSes on SSDs is a task frequently
performed both in academia [3, 4, 6, 7, 20, 21, 42, 44, 48, 61, 64] and
in industry [26, 34, 77, 78].

In general, these evaluations fall short in considering the bench-
marking pitfalls we discuss in this paper. For example, the evalua-
tions of the systems do not report the duration of the experiments,
or they do not specify the initial conditions of the SSD on which
experiments are run, or consider a single dataset size. As we show
in this paper, these aspects are crucial for both the quantitative and
the qualitative analysis of the performance of a data store deployed
on an SSD. In addition, performance benchmarks of PTSes typically
focus on application-level write amplification to analyze the I/O
efficiency and flash-friendliness of a system [3, 20, 21, 42, 48, 61].
We show that also device-level write amplification must be taken
into account for these purposes.

A few systems distinguish between bursty and sustained perfor-
mance, by investigating the variations of throughput and latencies
over time in LSM-tree key value stores [4, 44, 64]. Balmau et al. [4]
additionally show how some optimizations can improve the per-
formance of LSM-Tree key-value stores in the short term, but lead
to performance degradation in the long run. These works focus
on the high-level, i.e., data-structure specific, causes of such per-
formance dynamics. Our work, instead, investigates the low-level
causes of performance variations in PTSes, and correlates them
with the idiosyncratic performance dynamics of SSDs.

Yang et al. [80] show that stacking several log-structured data
structures may hinder the effectiveness of the log-structured de-
sign. Oh et al. [54] investigate the use of SSD over-provisioning to
increase the performance of a SSD-based cache. Athanassoulis et
al. [1] propose the RUM conjecture, which states that PTSes have
an inherent trade-off between performance and storage cost. Our
paper touches some of these issues, and complements the findings
of these works, by covering in a systematic fashion several pitfalls

of benchmarking PTSes on SSDs, and by providing experimental
evidence for each of them.
SSD performance modeling and benchmarking. The research
and industry storage communities have produced much work on
modeling and benchmarking the performance of SSDs. The Stor-
age Networking Industry Association has defined the Solid State
Storage Performance Test Specification [70], which contains the
guidelines to perform rigorous and reproducible SSD benchmark-
ing. Many analytical models [23, 33, 66, 67] express in closed form
the performance and the device-level WA of an SSD as a function of
the workload and the SSD internals and parameters. MQSim [68] is
a simulator specifically designed to replicate quickly and accurately
the behavior of an SSD at steady state.

These works focus on the performance of the bare SSD and the
garbage collection process, either using synthetic workloads (e.g.,
generated using fio), or simulations, rather than using real-world
systems and workloads. We complement these results by focusing
on the effects low-level SSD dynamics have on the end perfor-
mance of two widely used PTSes. We cover additional dimensions
other than the SSD garbage collection process, such as the impact
on performance of the dataset size, space amplification, software
over-provisioning, and SSD technology. We also provide guidelines
on how to conduct a more rigorous and SSD-aware performance
benchmarking. By studying the behavior of two of the most widely
used PTSes we aim to raise awareness about the SSD performance
intricacies in the systems and databases communities.
System benchmarking. Benchmarking a system is a notoriously
difficult task, and can incur subtle pitfalls that may undermine its
results and conclusions. Such a complexity is epitomized by the list
of benchmarking crimes [31], a popular collection of benchmarking
errors that are frequently found in the evaluation of research papers.
Raasveldt et al. [60] provide a similar list with a focus on DB sys-
tems. Many research papers target different aspects of the process
of benchmarking a system. Mariq et al. [47], Uta et al. [73], and
Hoefler and Belli [32] focus on the statistical relevance of the mea-
surements, investigating whether experiments can be repeatable,
and how many trials are needed to consider a set of measurements
meaningful. Our work is complementary to this body of research,
in that it aims to provide guidelines to obtain a more fair and re-
producible performance assessment of PTSes deployed on SSDs.

6 CONCLUSION
The complex interaction between a persistent tree data structure
and a flash SSD device can easily lead to inaccurate performance
measurements. In this paper we show seven pitfalls that one can
incur when benchmarking a persistent tree data structure on a flash
SSD. We demonstrate these pitfalls using RocksDB and WiredTiger,
two of the most widespread implementations of the LSM-tree and of
the B+tree persistent data structures, respectively. We also present
guidelines to avoid the benchmarking pitfalls, so as to obtain ac-
curate and representative performance measurements. We hope
that our work raises awareness about and provides a deeper under-
standing of some benchmarking pitfalls, and that it paves the way
for a more rigorous, fair, and reproducible benchmarking.

375

REFERENCES
[1] Manos Athanassoulis, Michael Kester, Lukas Maas, Radu Stoica, Stratos Idreos,

Anastassia Ailamaki, and Mark Callaghan. 2016. Designing Access Methods: The
RUM Conjecture. In International Conference on Extending Database Technology
(EDBT). 461–466.

[2] AWS. 2020. SSD Instance Store Volumes. https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/ssd-instance-store.html. Accessed: 2020-11-09.

[3] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng
Yuan, Aashray Arora, Karan Gupta, and Pavan Konka. 2017. TRIAD: Creating
Synergies Between Memory, Disk and Log in Log Structured Key-Value Stores.
In USENIX Annual Technical Conference (ATC). 363–375.

[4] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar Chand-
hiramoorthi, and Diego Didona. 2020. SILK+ Preventing Latency Spikes in
Log-Structured Merge Key-Value Stores Running Heterogeneous Workloads.
ACM Trans. Comput. Syst. 36, 4, Article 12 (May 2020), 27 pages.

[5] Nikos Batsaras, Giorgos Saloustros, Anastasios Papagiannis, Panagiota Fatourou,
and Angelos Bilas. 2020. VAT: Asymptotic Cost Analysis for Multi-Level Key-
Value Stores. CoRR abs/2003.00103 (2020). https://arxiv.org/abs/2003.00103

[6] Laurent Bindschaedler, Ashvin Goel, andWilly Zwaenepoel. 2020. Hailstorm: Dis-
aggregated Compute and Storage for Distributed LSM-based Databases. In ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 301–316.

[7] Edward Bortnikov, Anastasia Braginsky, Eshcar Hillel, Idit Keidar, and Gali Sheffi.
2018. Accordion: Better Memory Organization for LSM Key-Value Stores. VLDB
Endow. 11, 12 (Aug. 2018), 1863–1875.

[8] Gerth Stolting Brodal and Rolf Fagerberg. 2003. Lower Bounds for External
Memory Dictionaries. In ACM-SIAM Symposium on Discrete Algorithms (SODA).
546–554.

[9] Mark Callaghan. 2015. Different kinds of copy-on-write for a b-tree: CoW-R,
CoW-S. http://smalldatum.blogspot.com/2015/08/different-kinds-of-copy-on-
write-for-b.html. Accessed: 2020-11-09.

[10] Fay Chang, JeffreyDean, SanjayGhemawat,Wilson C. Hsieh, DeborahA.Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008.
Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput.
Syst. 26, 2, Article 4 (June 2008), 26 pages.

[11] Asaf Cidon, Daniel Rushton, Stephen M. Rumble, and Ryan Stutsman. 2017.
Memshare: a Dynamic Multi-tenant Key-value Cache. In USENIX Annual Techni-
cal Conference (ATC). 321–334.

[12] Google Cloud. 2020. Storage options. https://tinyurl.com/y36r3yxx. Accessed:
2020-11-09.

[13] IBM Cloud. 2020. Storage options. https://cloud.ibm.com/docs/vsi?topic=virtual-
servers-storage-options. Accessed: 2020-11-09.

[14] Douglas Comer. 1979. Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (June 1979),
121–137.

[15] Intel Corporation. 2015. Intel Linux NVMe Driver. https://www.
intel.com/content/dam/support/us/en/documents/ssdc/data-center-
ssds/Intel_Linux_NVMe_Guide_330602-002.pdf. Accessed: 2020-11-09.

[16] Intel Corporation. 2019. Intel 660p SSD. https://www.intel.com/content/dam/
www/public/us/en/documents/product-briefs/660p-series-brief.pdf Accessed:
2020-11-09.

[17] Intel Corporation. 2020. Intel Solid-State Drive DC P3600 Series. Product specifi-
cation.

[18] Intel Corporation. 2020. Intel® Optane™ Technology. https:
//www.intel.com/content/www/us/en/architecture-and-technology/intel-
optane-technology.html. Accessed: 2020-11-09.

[19] Tom Coughlin. 2019. Digital Storage Projections For 2020. https://tinyurl.com/
yxu4n98u. Accessed: 2020-11-09.

[20] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2018. Optimal Bloom Filters
and Adaptive Merging for LSM-Trees. ACM Trans. Database Syst. 43, 4, Article
16 (Dec. 2018), 48 pages.

[21] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-Offs for
LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous Merging.
In ACM International Conference on Management of Data (SIGMOD). 505–520.

[22] Niv Dayan and Stratos Idreos. 2019. The Log-Structured Merge-Bush & the
Wacky Continuum. In ACM International Conference on Management of Data
(SIGMOD). 449–466.

[23] Peter Desnoyers. 2014. Analytic Models of SSD Write Performance. ACM Trans.
Storage 10, 2, Article 8 (March 2014), 25 pages.

[24] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mit-
tal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL
Server’s Memory-Optimized OLTP Engine. In ACM International Conference on
Management of Data (SIGMOD). 1243–1254.

[25] Facebook. 2013. McDipper: A key-value cache for Flash storage.
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-
value-cache-for-flash-storage/10151347090423920. Accessed: 2020-11-09.

[26] Facebook. 2020. RocksDB Performance Benchmarks. https://github.com/
facebook/rocksdb/wiki/Performance-Benchmarks. Accessed: 2020-11-09.

[27] Facebook. 2020. The RocksDB persistent key-value store. http://rocksdb.org.
Accessed: 2020-11-09.

[28] Facebook. 2020. RocksDB tuning guide. https://github.com/facebook/rocksdb/
wiki/RocksDB-Tuning-Guide. Accessed: 2020-11-09.

[29] Google. 2020. LevelDB. https://github.com/google/leveldb. Accessed: 2020-11-09.
[30] Carnegie Mellon University Database Group. 2019. Peloton. https://pelotondb.

io/about/. Accessed: 2020-11-09.
[31] Gernot Heiser. 2010. System Benchmarking Crimes. https://www.cse.unsw.edu.

au/~gernot/benchmarking-crimes.html. Accessed: 2020-11-09.
[32] Torsten Hoefler and Roberto Belli. 2015. Scientific Benchmarking of Parallel

Computing Systems: Twelve Ways to Tell the Masses When Reporting Perfor-
mance Results. In ACM International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). Article 73, 12 pages.

[33] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman Pletka.
2009. Write Amplification Analysis in Flash-Based Solid State Drives. In ACM
International Systems & Storage Conference. (SYSTOR). Article 10, 9 pages.

[34] HyperDex. 2020. HyperLevelDB Performance Benchmarks. http://hyperdex.org/
performance/leveldb/s. Accessed: 2020-01-31.

[35] IBM. 2020. DB2 Index Structure. https://www.ibm.com/support/
knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/
c0005300.html. Accessed: 2020-11-09.

[36] Nikolas Ioannou, Kornilios Kourtis, and Ioannis Koltsidas. 2018. Elevating Com-
modity Storage with the SALSA Host Translation Layer. In IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS). 277–292.

[37] Steve Knipple. 2017. Leveraging the Latest Flash in the Data Center. Flash
Memory Summit. https://www.flashmemorysummit.com/English/Collaterals/
Proceedings/2017/20170809_FG21_Knipple.pdf. Accessed: 2020-11-09.

[38] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. 2019. Reaping the
Performance of Fast NVM Storage with Udepot. In USENIX Conference on File
and Storage Technologies (FAST). 1–15.

[39] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019. KVell:
The Design and Implementation of a Fast Persistent Key-Value Store. In ACM
Symposium on Operating Systems Principles (SOSP). 447–461.

[40] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-Tree for New Hardware Platforms. In IEEE International Conference on Data
Engineering (ICDE). 302–313.

[41] Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. 2016. Towards
Accurate and Fast Evaluation of Multi-Stage Log-Structured Designs. In USENIX
Conference on File and Storage Technologies (FAST). 149–166.

[42] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. 2011. SILT:
A Memory-Efficient, High-Performance Key-Value Store. In ACM Symposium on
Operating Systems Principles (SOSP). 1–13.

[43] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2017. WiscKey: Sepa-
rating Keys from Values in SSD-Conscious Storage. ACM Trans. Storage 13, 1,
Article 5 (March 2017), 28 pages.

[44] Chen Luo and Michael J. Carey. 2019. On Performance Stability in LSM-Based
Storage Systems. VLDB Endow. 13, 4 (Dec. 2019), 449–462.

[45] Chen Luo and Michael J. Carey. 2020. LSM-based storage techniques: a survey.
The VLDB Journal 29, 1 (2020), 393–418.

[46] Dongzhe Ma, Jianhua Feng, and Guoliang Li. 2014. A Survey of Address Transla-
tion Technologies for Flash Memories. ACM Comput. Surv. 46, 3, Article 36 (Jan.
2014), 39 pages.

[47] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn, Ryan
Stutsman, and Robert Ricci. 2018. Taming Performance Variability. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI). 409–425.

[48] Leonardo Marmol, Swaminathan Sundararaman, Nisha Talagala, and Raju Ran-
gaswami. 2015. NVMKV: A Scalable, Lightweight, FTL-aware Key-Value Store.
In USENIX Annual Technical Conference (ATC). 207–219.

[49] Micron. 2020. 3D XPoint™ Technology. https://www.micron.com/products/
advanced-solutions/3d-xpoint-technology. Accessed: 2020-11-09.

[50] minitool.com. 2020. SSD Prices Continue to Fall, Now Upgrade Your Hard Drive!
https://www.minitool.com/news/ssd-prices-fall.html. Accessed: 2020-11-09.

[51] MongoDB. 2020. MongoDB’s WiredTiger Storage Engine. https://docs.mongodb.
com/manual/core/wiredtiger/. Accessed: 2020-11-09.

[52] MongoDB. 2020. The WiredTiger storage engine. http://source.wiredtiger.com.
Accessed: 2020-11-09.

[53] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety, and
Antony Rowstron. 2009. Migrating Server Storage to SSDs: Analysis of Tradeoffs.
In ACM European Conference on Computer Systems (EuroSys). 145–158.

[54] Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H. Noh. 2012. Caching
Less for Better Performance: Balancing Cache Size and Update Cost of Flash
Memory Cache in Hybrid Storage Systems. In USENIX Conference on File and
Storage Technologies (FAST). 25.

[55] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33, 4 (June 1996),
351–385.

376

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html
https://arxiv.org/abs/2003.00103
http://smalldatum.blogspot.com/2015/08/different-kinds-of-copy-on-write-for-b.html
http://smalldatum.blogspot.com/2015/08/different-kinds-of-copy-on-write-for-b.html
https://tinyurl.com/y36r3yxx
https://cloud.ibm.com/docs/vsi?topic=virtual-servers-storage-options
https://cloud.ibm.com/docs/vsi?topic=virtual-servers-storage-options
https://www.intel.com/content/dam/support/us/en/documents/ssdc/data-center-ssds/Intel_Linux_NVMe_Guide_330602-002.pdf
https://www.intel.com/content/dam/support/us/en/documents/ssdc/data-center-ssds/Intel_Linux_NVMe_Guide_330602-002.pdf
https://www.intel.com/content/dam/support/us/en/documents/ssdc/data-center-ssds/Intel_Linux_NVMe_Guide_330602-002.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/660p-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/660p-series-brief.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://tinyurl.com/yxu4n98u
https://tinyurl.com/yxu4n98u
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
http://rocksdb.org
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/google/leveldb
https://pelotondb.io/about/
https://pelotondb.io/about/
https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html
https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html
http://hyperdex.org/performance/leveldb/s
http://hyperdex.org/performance/leveldb/s
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0005300.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0005300.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0005300.html
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_FG21_Knipple.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_FG21_Knipple.pdf
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.minitool.com/news/ssd-prices-fall.html
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
http://source.wiredtiger.com

[56] E. S. Page. 1954. Continuous Inspection schemes. Biometrika 41, 1-2 (06 1954),
100–115.

[57] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and Angelos
Bilas. 2016. Tucana: Design and Implementation of a Fast and Efficient Scale-up
Key-value Store. In USENIX Annual Technical Conference (ATC). 537–550.

[58] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd Mowry, Matthew Perron, Ian Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu,
Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management Systems.
In Conference on Innovative Data Systems Research (CIDR).

[59] Percona. 2020. TokuMX. https://www.percona.com/software/mongo-database/
percona-tokumx. Accessed: 2020-11-09.

[60] Mark Raasveldt, Pedro Holanda, Tim Gubner, and Hannes Mühleisen. 2018. Fair
Benchmarking Considered Difficult: Common Pitfalls In Database Performance
Testing. In Workshop on Testing Database Systems (DBTest). Article 2, 6 pages.

[61] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017.
PebblesDB: Building Key-Value Stores Using Fragmented Log-Structured Merge
Trees. 497–514.

[62] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: A Space-
Efficient Key-Value Storage Engine for Semi-Sorted Data. VLDB Endow. 10, 13
(Sept. 2017), 2037–2048.

[63] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016. Flash Reliability
in Production: The Expected and the Unexpected. In USENIX Conference on File
and Storage Technologies (FAST). 67–80.

[64] Russell Sears and Raghu Ramakrishnan. 2012. BLSM: A General Purpose Log
Structured Merge Tree. In ACM International Conference on Management of Data
(SIGMOD). 217–228.

[65] Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao. 2018. DIDACache: An
Integration of Device and Application for Flash-Based Key-Value Caching. ACM
Trans. Storage 14, 3, Article 26 (Oct. 2018).

[66] Radu Stoica and Anastasia Ailamaki. 2013. Improving Flash Write Performance
by Using Update Frequency. VLDB Journal 6, 9 (2013), 733–744.

[67] Radu Stoica, Roman Pletka, Nikolas Ioannou, Nikolaos Papandreou, Sasa Tomic,
and Haralampos Pozidis. 2019. Understanding the Design Trade-Offs of Hybrid
Flash Controllers. In IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS). 152–164.

[68] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata Ghose,
and Onur Mutlu. 2018. MQSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices. In USENIX Conference on File and Storage

Technologies (FAST). 49–66.
[69] techpowerup.com. 2018. SSDs Are Cheaper Than Ever, Hit the Magic 10 Cents Per

Gigabyte Threshold. https://www.techpowerup.com/249972/ssds-are-cheaper-
than-ever-hit-the-magic-10-cents-per-gigabyte-threshold. Accessed: 2020-11-
09.

[70] The Storage Networking Industry Association. 2020. Solid State Storage (SSS)
Performance Test Specification (PTS). https://www.snia.org/tech_activities/
standards/curr_standards/pts. Accessed: 2020-11-09.

[71] Animesh Trivedi, Nikolas Ioannou, Bernard Metzler, Patrick Stuedi, Jonas Pfef-
ferle, Kornilios Kourtis, Ioannis Koltsidas, and Thomas R. Gross. 2018. FlashNet:
Flash/Network Stack Co-Design. ACM Trans. Storage 14, 4, Article 30 (Dec. 2018).

[72] Twitter. 2013. Fatcache. https://github.com/twitter/fatcache. Accessed: 2020-11-
09.

[73] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan S. Reller-
meyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup. 2020. Is Big Data
Performance Reproducible in Modern Cloud Networks?. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI). 513–527.

[74] Richard L. Villars and Eric Burgener. 2014. IDC: Building data centers
for todays data driven economy: The role of flash. Flash Memory Sum-
mit. https://www.sandisk.it/content/dam/sandisk-main/en_us/assets/resources/
enterprise/white-papers/flash-in-the-data-center-idc.pdf.

[75] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin, Chen Zhang,
and Jason Cong. 2014. An Efficient Design and Implementation of LSM-Tree Based
Key-Value Store on Open-Channel SSD. In European Conference on Computer
Systems (EuroSys). Article 16, 14 pages.

[76] ZiqiWang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,Michael
Kaminsky, and David G. Andersen. 2018. Building a Bw-Tree Takes More Than
Just Buzz Words. In ACM International Conference on Management of Data (SIG-
MOD). 473–488.

[77] WiredTiger. 2013. LevelDB Performance Benchmarks. https://github.com/
wiredtiger/wiredtiger/wiki/LevelDB-Benchmark. Accessed: 2020-11-09.

[78] WiredTiger. 2017. WiredTiger Performance Benchmarks. https://github.com/
wiredtiger/wiredtiger/wiki/Btree-vs-LSM. Accessed: 2020-11-09.

[79] Kan Wu, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Rathijit Sen, and
Kwanghyun Park. 2019. Exploiting Intel Optane SSD for Microsoft SQL Server. In
International Workshop on Data Management on New Hardware (DaMoN). Article
15, 3 pages.

[80] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and Swaminathan Sun-
dararaman. 2014. Don’t Stack Your Log On My Log. In Workshop on Interactions
of NVM/Flash with Operating Systems and Workloads (INFLOW).

377

https://www.percona.com/software/ mongo-database/percona-tokumx
https://www.percona.com/software/ mongo-database/percona-tokumx
https://www.techpowerup.com/249972/ssds-are-cheaper-than-ever-hit-the-magic-10-cents-per-gigabyte-threshold
https://www.techpowerup.com/249972/ssds-are-cheaper-than-ever-hit-the-magic-10-cents-per-gigabyte-threshold
https://www.snia.org/tech_activities/standards/curr_standards/pts
https://www.snia.org/tech_activities/standards/curr_standards/pts
https://github.com/twitter/fatcache
https://www.sandisk.it/content/dam/sandisk-main/en_us/assets/resources/enterprise/white-papers/flash-in-the-data-center-idc.pdf
https://www.sandisk.it/content/dam/sandisk-main/en_us/assets/resources/enterprise/white-papers/flash-in-the-data-center-idc.pdf
https://github.com/wiredtiger/wiredtiger/wiki/LevelDB-Benchmark
https://github.com/wiredtiger/wiredtiger/wiki/LevelDB-Benchmark
https://github.com/wiredtiger/wiredtiger/wiki/Btree-vs-LSM
https://github.com/wiredtiger/wiredtiger/wiki/Btree-vs-LSM

	Abstract
	1 Introduction
	2 Background
	2.1 Persistent Tree Data Structures
	2.2 Flash SSDs

	3 Experimental Setup
	3.1 Systems
	3.2 Workloads
	3.3 Metrics
	3.4 State of the drive
	3.5 Hardware

	4 Benchmarking Pitfalls
	4.1 Steady-state vs. bursty performance
	4.2 Analysis of WA-D
	4.3 Initial conditions of the drive
	4.4 Dataset size
	4.5 Space amplification
	4.6 SSD over-provisioning
	4.7 Storage technology
	4.8 Additional workloads

	5 Related Work
	6 Conclusion
	References

