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Abstract

In this paper we build sequence data types that can
efficiently support two important operations for par-
allel programming: partition and concatenation. We
present a common chunk-based (instead of element-
based) interface that enables good performance in
practice, and consider two alternative implementa-
tions: ropes [2] and skip list arrays (based on skip
lists [21]). We parallelize a run-length encoding algo-
rithm as a motivating example, and show that, com-
pared to dynamic arrays, the proposed data struc-
tures significantly increase the scalability of parallel
algorithms that include both partitioning and con-
catenation operations.

1 Introduction

As parallel systems become the norm, programmers
are forced to deal with parallelism if they want to take
advantage of multicore machines. This requires re-
thinking algorithms and data structures. To this end,
researchers have advocated abandoning the widely-
used accumulator paradigm, and using divide and
conquer algorithms instead [1, 24].

Implementing divide and conquer (D&C) algo-
rithms that operate on sequences frequently re-
quires partitioning to split up the data to form sub-
problems, and concatenation to combine partial so-
lutions.

A simple illustrative example of this is the filter
operation. It accepts a sequence x as input, and re-
turns a sequence that contains the elements of x that
satisfy a specified predicate as output. To implement
a parallel filter we can split x, recurse until we
reach a single element, and use the predicate to ei-
ther return an empty sequence or a sequence with a
single element. Finally, we concatenate partial results
to form the output. In §2.1 we discuss another ex-
ample, parallelizing a run-length encoding algorithm
which also depends on partition and concatenation.

Traditionally, sequence data types are imple-
mented using either arrays or linked lists. Linked lists
are fundamentally problematic for parallel program-
ming because they cannot be efficiently partitioned.
Using arrays is better, but becomes problematic when
concatenation is required.

In this paper, we investigate how to build data
structures that can support both efficient partition
and concatenation. We develop a common interface,
which we implement with two data structures: one
based on ropes [2] and one based on skip lists [21].

Performance is vital to parallel programming.
Good scalability is not enough. If a parallel program
does not outperform the sequential version, it is use-
less even if it is scalable. Achieving good parallel
performance is not easy, and it usually depends on
having a fast sequential computation at the bottom
of the computation.

We discover that to support good performance, our
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sequences interface needs to be chunk-based (instead
of element-based). For data structure implementa-
tions this implies a two-level structure. At the top
level, structure enables efficient concatenation and
lookups. At the bottom level, efficient sequential
computation is achieved using unstructured arrays.
In §2 we provide some background, parallelize a

run-length encoding algorithm as an example, and
discuss why linked-list and array sequence implemen-
tations are inadequate. In §3 we present an interface
and discuss our implementations: ropes and skip-list
arrays, which we evaluate in §4.

2 Background

Languages like Python, Perl, Ruby, and PHP, have
become popular due to their ease-of-use. This can be
largely attributed to their embedded data structures
(e.g., lists and dictionaries in Python) that allow
programmers to easily express algorithms, but also
provide means for easy and efficient data exchange
between different and independently-developed mod-
ules. Most of these languages implement two different
data types: sequences and associative arrays. In this
paper, we focus on sequences.
A sequence data type implements an ordered col-

lection of values, mapping each ordinal key of a con-
tiguous discrete range (normally starting from 0) to
an element. Sequences are extensively used in func-
tional programming where, combined with high-order
functions like map and reduce, are able to express a
rich set of algorithms. This methodology has greatly
influenced imperative [25], and – more importantly
for our purposes – parallel programming [6, 10,23].
Most of these (imperative) languages implement

sequences using dynamic arrays1 because they are
simple, easy to implement, and offer fast element ac-
cess [22]. While dynamic arrays are a good match
for sequential algorithms, parallel algorithms exhibit
a different structure, and depend on different opera-
tions.
In the next section, we illustrate the differences

between sequential and parallel algorithms using run-
length encoding as an example.

1i.e., arrays that are dynamically resized as needed

1 class RLE(object):
2 def __init__(self,sym,cnt):
3 self.sym = sym
4 self.cnt = cnt
5

6 def rle_encode(xs):
7 ret,curr,cnt = ([],xs[0],1)
8 for item in xs[1:]:
9 if item == curr:

10 cnt += 1
11 else:
12 ret.append(RLE(curr,cnt))
13 curr, cnt = (item,1)
14 ret.append(RLE(curr,cnt))
15 return ret

Listing 1: sequential run-length encoding using the
accumulator paradigm.

2.1 A case study: run-length encod-
ing

Run-length encoding (RLE) encodes consecutive in-
stances of the same symbol s (called runs), as a tuple
(s,cnt), where cnt is the number of the instances.
For example, the string ’aaaaabbbb’, would be en-
coded as [(’a’,5),(’b’,4)]. RLE is a building
block of many compression programs such as bzip2.

A sequential implementation of RLE is shown in
Listing 1. This is probably the first algorithm one
would write to solve this problem. To focus on algo-
rithmic aspects instead of implementation details, we
use Python syntax to write concise code, even though
our implementation is in C.

The algorithm follows the accumulator paradigm:
after program state is initialized, it is incrementally
updated by consuming input. The state is the en-
coded output, the current symbol, and its count. As
long as the same symbol appears in the input, the
count is increased by one. When a different sym-
bol appears, the current symbol and its count is ap-
pended to the output, and the new symbol is stored
with a count of 1.

Dynamic arrays (or indeed linked lists) are a good
match for this algorithm, since input is iterated se-
quentially and output is constructed by appending
elements at the end of a sequence.
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1 def prle_rec(xs):
2 if len(xs) == 1:
3 return [RLE(xs[0],1)]
4 mid = len(xs) / 2
5 rle1 = spawn prle_rec(xs[:mid])
6 rle2 = spawn prle_rec(xs[mid:])
7 sync
8 return rle_merge(rle1, rle2)
9

10 def rle_merge(rle1, rle2):
11 if rle1[-1].sym == rle2[0].sym:
12 rle2[0].cnt += rle1.pop().cnt
13 return rle1 + rle2

Listing 2: parallel run-length encoding using divide
and conquer.

Although the accumulator paradigm is natural for
sequential execution and generally achieves good per-
formance, it cannot be efficiently parallelized due to
the singular state it maintains.

To enable for parallelism, we express RLE using
a D&C algorithm. We use the spawn and sync lan-
guage constructs of the Cilk language [11] to create
parallel tasks. The spawn keyword prepends a func-
tion call, specifying that the callee can (but does not
have to) execute in parallel with the caller. The sync
keyword acts as a barrier, and does not allow exe-
cution to proceed until all spawned functions have
returned and have made their result available. Note
that eliding spawn and sync results in a valid sequen-
tial program. Cilk parallel constructs can easily ex-
press divide and conquer algorithms, and more recent
parallel languages have adopted similar features (e.g.,
OpenMP’s tasks [17], and Chapel’s begin statement
[5]).

Our parallel D&C implementation is shown in List-
ing 2. We first split the problem into two sub-
problems (binary splitting) by dividing the input
(line 4), then recursively solve each sub-problem sep-
arately (lines 5-7), and finally combine the two partial
solutions to get the final solution (line 8). We com-
bine solutions by checking whether the last element
of the first solution is the same as the first element of
the second solution. If that is the case, we merge the
two elements before concatenating the lists. We ter-

minate the recursion by providing a unitary solution
when the input is a single element (lines 2-3). The
D&C algorithm can be easily parallelized by solving
the two sub-problems in parallel.

It is worth noting that the same algorithm can
be expressed using a data parallel map/reduce, by
mapping each input element to the unitary solution
and then performing a reduction on rle merge.2

Since rle merge is an associative operation, the
above map/reduce can be executed in parallel. Our
discussion is based on the binary splitting method
because it provides more transparency on the paral-
lel execution, but our methods are applicable to the
data parallel version as well.

As can be seen in our example, there are two basic
operations used in the parallel RLE version: parti-
tioning (lines 5-6) and concatenation (line 13).
In general, we argue that partitioning and concate-

nation are basic operations for parallel programming.
On one hand, partitioning is used to split the input,
allowing each parallel context can act on its own part
independently. Parallel algorithms that produce lists,
typically build them by combining partial solutions
via concatenation. Reflecting the importance of these
operations, Scala’s parallel collection framework [18]
is based on the similar concepts of splitters and com-
biners. Similarly, Cilk Reducers [10] implement re-
duction objects for Cilk and include a concatenation
reduction object based on linked lists.

2.2 Implementing sequences

Traditional data structures used to implement se-
quence data types, i.e., linked lists and arrays, cannot
implement both of these operations efficiently. While
concatenating linked lists is extremely fast, partition-
ing is a Θ(n) operation, rendering linked lists utterly
inapt for parallel programming. Contrarily, arrays
can be (non-destructively) partitioned very fast and
generally perform well because they completely lack
structure and are very close to the data machine rep-
resentation. Their lack of structure, however, makes
it difficult to combine results. Concatenating arrays

2e.g., for Python: reduce(rle merge, map(lambda x:
[RLE(x[0],1)], xs))
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is a Θ(n) operation because it requires copying at
least the elements of one array, and maybe both if
it is not possible to expand the other array using a
function like realloc.
Overall, arrays and linked lists are antithetical with

regard to partitioning and concatenation: arrays can
be efficiently partitioned, but cannot be efficiently
concatenated, while the opposite is true for linked
lists.

Because, normally, partitioning is applied on the
input and concatenation on the output, an alterna-
tive approach would be to use different data struc-
tures for the input and output. We see two prob-
lems with this approach. First, using two different se-
quence data type implementations significantly com-
plicates the program and makes code maintainability
difficult. As exemplified by embedded data struc-
tures in sequential languages, there are many usabil-
ity benefits when using a single sequence data type
across the whole program. Second, it is possible that
the output of one component will act as input for an-
other parallel component, blurring the input/output
distinction for a particular sequence.

Hence our goal is to implement a data structure
with which neither partitioning nor concatenation
will dominate the parallel computation. We assume
that the parallel computation operates over all input,
so we require partitioning and concatenation being
significantly better than O(n).

1 def prle_rec(xs):
2 if len(xs) <= cutoff:
3 return rle_encode(xs)
4 mid = len(xs) / 2
5 rle1 = spawn prle_rec(xs[mid:])
6 rle2 = spawn prle_rec(xs[:mid])
7 sync
8 return rle_merge(rle1, rle2)

Listing 3: Optimized parallel RLE using cutoff.

The above requirements, however, are not enough.
There is no point in writing parallel programs if they
do not perform better than their sequential counter-
parts. One way to address this is to increase the
time the program spends on (fast) sequential com-

putations without hurting parallelism. A standard
optimization to do that for D&C algorithms is to use
a cutoff value to stop the recursion before reaching
the unitary solution, and apply the sequential com-
putation instead.
Applying this optimization for RLE encoding is

shown in Listing 3. This leads to significantly im-
proved performance because the sequential accumu-
lator version is significantly faster than the recursive
one.
Overall, achieving good performance for a parallel

computation depends largely on efficient serial exe-
cution towards the leaves of the computation.

3 Design and Implementation

As discussed in the previous section, for a data struc-
ture to be effective in practice, it needs to facili-
tate fast sequential execution. This can be achieved
by using contiguous areas of memory (we call them
chunks), instead of elements, as the basic unit. We
start by presenting a common interface for sequences
based on chunks.

3.1 Interface

A summary of the interface shown in Table 1. The
interface acts on chunks, i.e., contiguous memory ar-
eas represented as a pointer and their size, instead
of individual elements. Chunks amortize the over-
head of lookups and allow for fast sequential com-
putations. Our initial implementation was element-
based and performed worse from the sequential ver-
sion for more than one order of magnitude. While
for scalability and complexity this does not matter, in
practice it makes a big difference because it requires a
large number of cores (more than what many modern
machines provide) to improve performance compared
to the sequential case.
On the other hand, a chunk-based interface adds

an additional abstraction for the programmer. At the
lowest level, it makes program harder to write, espe-
cially if you using a chunk-based interface for both
input and output. We argue, however, that this is
a necessary evil: we cannot achieve acceptable per-
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operation description

get(s, idx) -> chunk get chunk on idx
append prepare(s) -> chunk get a chunk to append elements to
append finalize(s, nelems) finalize append
split(s) -> (s1, s2) split s into s1 and s2, so that they have

(roughly) the same number of elements
concat(s1, s2) concatenate s2 to s1
pop(s, nelems) -> chunk remove and return a chunk with no more than

nelems elements from the end

slice(s, idx, nelems) -> sl create a slice from s
slice slice(sl, idx, nelems) -> sl create a slice from sl
slice split(sl) -> (sl1, sl2) split slice
slice get(sl, idx) -> chunk get chunk on idx (sl must include idx)
slice next(sl) -> chunk return first chunk and move to next chunk

chunks are represented as a tuple of (pointer, number-of-elements).

Table 1: Interface summary

formance otherwise. Creating proper programming
abstractions (e.g., specific iterators) can reduce the
programmer’s effort. Furthermore, with proper lan-
guage support the programmer can use high-level op-
erations (e.g., array operations, map/reduce oper-
ations, Chapel’s promotions [5]) build on top of the
proposed interface, but we do not tackle this here.

Next, we describe the operations supported by the
interface. The get(idx) operation returns a chunk
starting at element idx. Appending elements is a
two step process: append prepare returns a chunk
for the new elements, and append finalize com-
pletes the operation. Before finalization, the ap-
pended elements are not accessible using get(). The
split operation destructively splits the array, so
that the two pieces have (roughly) the same amount
of elements. Finally, operations for concatenation
(concat) and removing elements from the end of
an array (pop) are also provided.

Although it would be possible to use the split
operation for splitting input, it is not always efficient
to do so because it creates two new lists out of the
first, and in many cases (e.g., in the RLE example),
this is not required. To avoid the unnecessary over-
head, we introduce slices, which represent sub-regions
of a sequence. Splitting a slice creates two new slices
with the same number of elements.

Next, we discuss two implementations of this in-
terface: ropes and skip list arrays.

3.2 Ropes

Tree data structures appear like a good candidate
for providing efficient partition and concatenation [1,
24]. A tree data structure that is well suited for our
purposes is Ropes [2]. Indeed, ropes have been used
to implement sequence data types in parallel systems
[8, 18].

Initially, ropes were proposed as an alternative
to traditional unstructured string representations of
programming languages, aiming to improve typical
string operations such as concatenation.

As shown in Figure 1, ropes maintain chunks at
their leaves, while their internal nodes contain the
length of the string represented by the respective sub-
tree. In general, for a rope to maintain its good per-
formance properties for lookups and partitioning it
needs to be well-balanced. In a perfectly balanced
rope, each children would split the range of their par-
ent in two equal parts. Maintaining good balance,
however, is not easy in the face of concatenations.
A basic concatenation operation can be implemented
by creating a new root node with the two operands
as children. Even if th the two tree operands are in-
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Figure 1: Example of a rope data structure. It in-
cludes 80 items. Internal nodes are represented with
circles, while leaves are represented with rectangles.

dividually balanced, there are no guarantees for the
balance of the result without assuming that the con-
catenation operands have similar sizes. To deal with
this issue, ropes include a balance check, which can
cause a rebalancing operation which effectively recon-
structs the tree so that it is balanced [2].

Next, we describe how we implement slices and
concatenation on ropes.

Slices/partition A naive approach to implement
slices is to maintain an index and a length for each
slice and simply use the sequence interface, ignoring
any knowledge about the internal rope implementa-
tion. This, however, would result in always start-
ing from the root node, which can be inefficient (es-
pecially for large sequences). Hence, we implement
rope-specific slices by having each rope slice maintain
two pieces of information. First a slice contains the
smallest rope node that contains the whole slice (slice
root), along with offset of the slice in the node. Sec-
ond, a slice maintains the first leaf of the slice along
with the corresponding offset in the leaf. This enables
lookups to be performed starting from the slice root,
while operations such as slice next() return the
chunk of the first leaf, and starting from there they
traverse the tree upwards and then downwards to find
the next first leaf. Although this does not change the
complexity of the operations (e.g., O(log n) steps for
partitioning), it offers significantly improved perfor-
mance.

8 20

28
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15 10

25

16 11

27

52

7 0

7

7

Head Tail

Figure 2: Example of a skip-list array. It includes 87
items in 7 nodes. Tail backward pointers are repre-
sented with dashed lines.

Concatenation We implement concatenation by
creating a new root node and attach the operands as
children. As an optimization, if both ropes include a
single leaf and there is sufficient space, we copy the
contents of the first second leaf to the first (and avoid
creating a new root).

3.3 Skip List Arrays

Skip list arrays (SLAs) are based on skip lists [21], a
probabilistic data structure, developed as an alterna-
tive to balanced trees. Each skip list node is assigned
a random level, up to a maximum value, so that nodes
with level n + 1 are a fraction p of nodes with level
n. This property is probabilistic and achieved via
randomized level selection when a new node is cre-
ated. Each node contains a number of forward point-
ers equal to its level, forming a linked list for each
level so that the higher-level lists are sparser than
the lower-level lists. To lookup a key we traverse the
lists starting from the top level. Traversing high-level
lists skips a large number of lower-level nodes. As we
get closer to the desired key, we descend to lower lev-
els. The probabilistic expected cost for the lookup
operation is O(log n) [21].
In many ways, skip list arrays are to skip lists what

ropes are to balanced binary trees. To implement
SLAs, we augment traditional skip lists in three ways
(see Figure 2):

(i) In each SLA node we store an arbitrary-sized
chunk of elements, instead of a single element.

(ii) In addition to the head sentinel node, we also
use a tail sentinel node with backward point-
ers to enable efficient concatenation. Using the
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tail node, concatenation can be performed in a
number of steps equal to the highest level of the
two SLA operands. The tail node can also be
exploited in two other SLA operations: append-
ing items to the end, and retrieving the elements
from the end.

(iii) Instead of just a pointer to the next node, we
also maintain partial element counts for each
level.3 The partial count is equal to the num-
ber of items between the current and the pre-
vious node for each level. Hence, the partial
count for the bottom level is the number of
items in the chunk of the node. Maintaining
item counts enables effective partitioning, while
keeping them partial allows modifications (e.g.,
concatenation) with only local changes (no need
to traverse all the nodes). No partial counts for
the head node are needed. The tail count for
the bottom level is always zero, but we keep it
because it simplifies our algorithms.

Slices/partition Similarly with ropes, we imple-
ment SLA-specific slices using SLA pointers. An SLA
pointer is a special forward pointer structure that al-
lows to start a lookup from a previously defined point.
SLA pointers act similarly to head nodes, with the
addition of a (meaningful) count field that is set to
the total number of elements from the start of the
array to (but not including) the node they point to.

Concatenation The concatenation of sla1 to
sla2 will have the head node of sla1, the tail node
of sla2, and the its level will be eqal to the the max-
imum of sla1 and sla2 current levels. Initially, to
avoid having large gaps in chunks, we copy all ele-
ments from the first node of sla2 to the last node
of sla1 if enough space exists. Then we iterate over
all possible levels and set up forward pointers and
partial counts accordingly. There are three different
cases depending on the level: (i) for a level that did
not exist in sla1, we set its head forward pointer
and partial count, (ii) for a level that did not exist

3a similar modification has been proposed by Pugh [20] to
implement rank operations on skip lists.

in sla2, we set its tail backward pointer and partial
count, and (iii) for a level that existed in both sla1
and sla2, we link the first node of sla2 to the last
node of sla1 and adjust the formers’ partial count
accordingly.

3.4 Discussion

The main difference between ropes and SLAs is how
balancing is achieved. In ropes, imbalance might hap-
pen which will lead to a rebalance operation that will
have to reconstruct the tree, which can cause signif-
icant delays when it happens. On the other hand,
SLAs do not require rebalance, but depend on sta-
tistical properties of individual nodes for achieving
balancing.

4 Experimental Evaluation

4.1 Setup and methodology

We use four systems for our evaluation: a 2-way 10-
core system (20 cores) Intel Ivy Bridge system, a 4-
way eight-core system (32 cores) Intel Beckton sys-
tem, a 4 way 12-core system (48 cores) AMD Magny-
Cours system, and a 4-way 6-core system (24 cores)
AMD Istanbul system. Table 2 provides more details.

All systems are running a 64-bit version of linux
(kernel version 4.0). We use the gcc (version 4.9) im-
plementation of Cilk Plus [4], which is the evolution
of the original Cilk language that supports C++ and
provides additional constructs. Our code is written
in C, and to retain control over parallel execution
we only use spawn and sync, ignoring more advanced
Cilk Plus constructs like reducers [10]. In our ini-
tial experiments, the default GNU libc malloc did
not scale well. Although ropes and SLAs can bene-
fit from custom allocators (e.g., by exploiting object
caching [3]), we did not want those potential benefits
to be a part of our evaluation. Thus, we use tcmal-
loc [12], a generic allocator with the goal of reducing
contention for multi-threaded programs.

We compare ropes and SLAs against dynamic
arrays (DAs) because DAs offer the best perfor-
mance and is what most languages use to imple-
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Ivy Bridge Beckton Magny-Cours Istanbul

#cores 2× 10 = 20 4× 8 = 32 4× 12 = 48 4× 6
Model E5-2670v2 L7555 6174 8431
Frequency (GHz) 2.5 1.86 2.2 2.4
L1 (data/instr.) 32K/32K (×20) 32K/32K (×32) 64K/64K (×48) 64K/64K (×24)
L2 (unified) 256K (×20) 256K (×32) 512K (×48) 512K (×24)
L3 (unified) 25M (×2) 24M (×4) 6M (×8) 6M (×4)

Hyperthreading on all machines is disabled.

Table 2: Experimental platforms.

ment their embedded sequence data type. DAs con-
sist of a single contiguous memory chunk, and are
resized on demand using the realloc function on
a parametrized granularity (da grain). Thus, ap-
pending x elements in total requires ⌈x/da grain⌉
calls of realloc. The realloc function will try to
resize the current buffer. If that is not possible, it will
allocate a new buffer and copy the data. We imple-
ment DA concatenation by performing a realloc
on the first array, and then copying the second array
to the newly allocated space.

For SLAs, we use a p value of 0.5 and define a
maximum level equal to 5. These values were chosen
conservatively based on the discussion in [21].

4.2 Sequential recursive sum

Our first experiment aims to quantify the overhead
introduced by the added structure of ropes and SLAs
compared to DAs. For that, we examine a worse-case
scenario for ropes and SLAs, where DAs are optimal.

We use a sequential recursive sum as our bench-
mark. Initially, an array of 107 integers is allocated
and filled with random values. Subsequently, we mea-
sure the time to recursively compute the sum of all
array elements, by splitting the array into two parts
until the size of the array reaches a cutoff value.
When cutoff is reached, we apply the sequential
accumulator algorithm.

Since the only operations used are splitting and
lookup, DAs will perform optimally, while SLAs and
ropes will have additional overhead due to their struc-
ture. Furthermore, the aforementioned two opera-
tions dominate execution time since addition induces

negligible overhead.

We use a cutoff value of 104 integers: large
enough to experiment with large chunks, and small
enough to be orders of magnitude less than the array
size.

Figure 3 shows the execution time (normalized in
cycles per array element) when using DAs, ropes, and
SLAs for various chunk sizes. The execution time is
broken into three parts: seq: time spent in the se-
quential accumulator algorithm, split: cost of split-
ting the array, and other: everything else. Addi-
tionally, the execution time normalized to the DA
execution time is shown at the top of the bar.

One observation here is that the chunk-based inter-
face is necessary to achieve good performance. Even
a chunk size of 50 leads to a ×5 (or worse) execution
time for our benchmark. Our initial implementation
without chunks led to one or two orders of magnitue
worse performance than DAs. Note that, in this case,
core counts on most modern machines would not be
able to reach a better performance than the sequen-
tial case.

For all machines, SLAs induce a higher overhead
than ropes due to increased split time. Increasing
the chunk size, improves both seq, and split perfor-
mance. For sufficiently large chunks (5-10 thousand
elements), the overhead becomes negligible.

4.3 Run-length encoding

Next, we use the RLE algorithm to evaluate SLAs on
a scenario where both partitioning and concatenation
are needed. Our goal is to compare the different se-
quence type implementations in such a scenario, and
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Figure 3: Performance of a recursive sum of 107 integers, using a cutoff value of 104. For SLAs and ropes,
the chunk size in integers is shown in parenthesis.

study the factors that impact performance. For input
we use a symbol array such that the encoding result
is 5 · 106 RLE pairs with a uniformly random count
between 1 and 100. We use a char type for the sym-
bol and a size t type for the count of a pair. For
the parallel RLE algorithm we use binary splitting
and a cutoff value of 512 symbols for applying the
sequential algorithm.

Our experiments include four implementations:
three using the same data structure for both the input
and output (DAs, SLAs, ropes), and one that uses an
array for input and a linked list of RLE pairs for the
output (array+list). In the SLA case, we use a chunk
of 512 symbols for the symbol array and a chunk of
32 pairs for the output, so that both cases result in
the same chunk size in bytes (512) on our systems.
We do not explore the SLA parameter space in this
work, but preliminary experimentation with parame-
ters close to what we report here led to qualitatively

similar results. For DAs, we also use 512 bytes for
the allocation grain (da grain).
An overview of our results is presented in Figure 4

which shows the speedup of each implementation over
the single-threaded DA case as the number of threads
increase. For each point in the graphs we executed
the experiment 4 times, used the average value for the
point, and the minimum/maximum values for the er-
ror bars. The sequential line shows the performance
of the sequential accumulator algorithm using DAs.

The DA implementation scales poorly, having a
maximum parallel speedup of no more than 5 for all
architectures. As a result, it does not significantly
outperform the sequential implementation. Note that
the sequential implementation that uses the accumu-
lator approach is roughly 3 times faster than the re-
cursive DA implementation for 1 thread.

Our purpose for including measurements for the
array+list case was to offer a comparison with

9



1 2 4 6 8 10 12 14 16 18 20

cores

0
2
4
6
8

10
12
14
16
18
20
22
24
26

sp
ee

du
p

sequential
da 
sla
ropes
array+list

(a) Ivy Bridge

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

cores

0
2
4
6
8

10
12
14
16
18
20
22
24
26

sp
ee

du
p

sequential
da 
sla
ropes
array+list

(b) Beckton

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

cores

0
2
4
6
8

10
12
14
16
18
20
22
24

sp
ee

du
p

sequential
da 
sla
ropes
array+list

(c) Magny-Cours

1 2 4 6 8 10 12 14 16 18 20 22 24

cores

0
2
4
6
8

10
12
14
16
18
20
22
24
26

sp
ee

du
p

sequential
da 
sla
ropes
array+list

(d) Istanbul

Figure 4: speedup of RLE for different sequence implementations compared to the single-threaded DA case.

the optimal case of using different data structures for
input and output. In practice, however, this imple-
mentation can perform worse than ropes and SLAs.
We attribute this to memory allocation scalability
problems because each RLE element is allocated sep-
arately. A remedy for this issue would be to have mul-
tiple RLE nodes for each list element, whose logical
conclusion is a structure similar to ropes and SLAs.

To gain additional insights on our results, we in-
strumented our code to take per-thread time mea-
surements for different operations. The time break-
down results for the Beckton machine are shown in
Figure 5. The time to execute the sequential encode
(i.e., after the cutoff) value is broken down to the
time to allocate a new sequence (encode alloc)
and the main loop of iterating input and appending
to the output (encode loop). split and merge
depict the time to split the array an merge the sub-

solutions, respectively. Finally, other shows the re-
maining execution time until the program ends.

We can see in the breakdown graph that DAs per-
form poorly because the merge operation dominates
execution time due to copying in concatenation. Fur-
thermore, we notice significant load imbalance be-
tween threads, which we attribute to the merging
operations of the final stages where most data are
copied.

The ropes and SLAs implementations behave sim-
ilarly. Ropes seem to perform better, but it is not
clear what happens in the general case because our
workload leads to fairly balanced ropes so the rebal-
ancing operation is not triggered.
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(b) SLA
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Figure 5: Beckton RLE execution time breakdown per thread for 32 threads.

5 Related Work

The sequence data type is fundamental in functional
programming and, along with functions, the basic
building block of functional algorithms. Many func-
tional languages, inspired by lisp, implement lists via
the cons operation, which is fundamentally problem-
atic for parallel computing [24]. Researchers work-
ing on the fortress parallel language advocate using
concatenation instead of cons as a fundamental op-
eration for functional lists [16, 24]. Finger trees [14]
are a functional data structure that supports efficient
concatenation and splitting, but requires lazy evalu-
ation. Data parallel Haskell [15] introduces a new ar-
ray type in Haskell for supporting nested data parallel
operations. Most imperative languages (e.g., Python
and Perl) use dynamic arrays because they are sim-
ple, easy to implement, and offer fast element access
which is the dominant operation in most sequential
algorithms [22].

Reductions offer an attractive way to combine sub-
solutions in parallel programming. OpenMP [17] pro-
vides a reduction clause that can be used with some
hard-wired operators on scalar values. Many lan-

guages (e.g., chapel [7]) offer support for user-defined
reduction operations, that can be automatically par-
allelized if the operation is assumed associative.

In this paper we focused on programming pat-
terns where each task operates on a distinct and well-
defined subset of the data. These patterns can offer
good performance and ease of use, but are not ap-
plicable to all programs. In more generic settings,
it is not known beforehand what part of the array a
task will access so synchronization between different
tasks is required. Pugh [19] describes a synchroniza-
tion method for skip-lists based on pointer reversal.
That is, when a node x is deleted, its forward pointer
is set to point to x’s predecessor, so that the lookup
operations that have reached x can continue. Herlihy
et al. [13] describe a concurrent skip list implemen-
tation, while Fraser and Harris [9] apply a generic
methodology for object-based software transactional
memory to skip lists.
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6 Conclusion

In this paper we discussed two implementations
(ropes and skip list arrays) for building a sequence
data type aimed for parallel programming. Both of-
fer efficient concatenation and partition and thus can
be paired with popular parallel programming meth-
ods such as divide and conquer algorithms and data
parallel operations. Furthermore, a chunk-based in-
terface allows them to perform good in practice.

7 Code availability

Our implementation has been made available at:
https://github.com/kkourt/xarray/.
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