Elevating Commodity storage wi
SALSA host translation layer

Nikolas loannou, Kornilios Kourtis, loannis
IBM Research — Zurich "
MASCOTS 2018

Storage diversity

= Multiple technologies offering different levels of performance at different costs

= Technologies
— SMRs
— HDDs
— NAND-Flash SSDs
— NVM

= Systems might require a combination of different technologies to meet their requirements
NAND-flash and SMRs are idiosyncratic

ldiosyncratic media

= No random updates

= NAND Flash
— Pages need to be erased before programmed
— Erase is performed in blocks of 100s or 1000s of pages

= SMR drives fit more tracks in the surface of a disk,
but can only be written sequentially
— Drives are split into zones

Device Translation Layer (TL)

= OS and applications are not (traditionally) built to handle idiosyncratic

= Device comes with a translation layer that present to software a device that can perform
updates to random locations

= Translation layer
— LBA to PBA mapping [oS J
— Out-of-place sequential writes
— Garbage Collection (GC)
— 1O amplification

« Awrite to an LBA might cause additions Reads or Writes
to the PBA

Logical Address Space (LBAs)

Translation Layer (LBA ->PBA)

device

Physical Address Space (PBASs)

Device TLs are inefficient

application
requirements

Cannot be
adapted to
specific

devices

multiple
Limited
resources in
commodity
devices

The trouble with low-cost Flash SSDs

Can’t we just use low-cost SSDs?

» Low-cost Flash suffers from high write latency, low endurance
» Limited resources, simple controllers to keep the cost as low as

possible (~ $0.23 /GB!)

» Therefore, they only employ simple Flash management
- Sufficiently good read performance
- But, limited write endurance, terrible write performance

0.400
0.350 H
0.300 -
v 0.250 -

msec)

2.0.200 -
[&]

100% Reads
(4KiB random)

o

c >250k IOPS
% 0.150 - @ 230usec
— 0.100 -
==RAIDO
0.050 -
-2=-RAID5
0.000 . ; ;
0 100 200 300

Throughput (KIOPS)
fio --filename=/dev/mapper/ssd --runtime=14400s --time_based --ioengine=psync --direct=1 --thread --norandommap --rw=randrw —rwmixread=80 --bs=4k --numjobs=32 --iodepth=1 --sync=1

400

+ 20% writes

0.800
0.700
0.600
» 0.500

msec)

2.0.400
[&]
c
& 0.300
“
0.200
0.100
0.000

Raw low-cost SSDs are

of limited use in a
datacenter

80% Reads / 20% Writes

(4KiB random)

==RAIDO
=2=RAID5

40 60 80 100 120
Throughput (KIOPS)

SoftwAre Log Structured Array

Can be adapted

and specialized to
specific application
~_ requirements

SALSA implements

its own GC and

LBA to PBA Salsa device Salsa device

Has visibility to all
devices and their
properties

devices

mapping. Writes

sequentially to
SALSA effectively C
disables Device TL — Device TL Device TL Device TL
GC by making its
job trivial.

What SALSA can do

SSDs
* |Improve performance
= |Improve endurance

= Enable commodity SSDs
to be used In the data-
center.

SMRs

Host-managed
Host-aware
Drive-managed

Improved performance

Specialized controller
(dual-mapping) for object
stores deployed on top of
filesystem

Mixed workloads

= Different application
policies on top of a
common pool of storage

Combine storage types

= Specialized controller that
combines SSDs + SMRs

= Unmodified application
(e.g., video server)

SALSA Architecture

Allocate storage
space. (Can
request specific
storage type.)

Request relocation
for GC (upcall).

(Controller needs
to update L2P)

[Object store]

e) (_owe
/dev/salsa-obj /dev/salsa-db

Controller Controller
(L2P, 10) (L2P, 10)

GC, Allocation

Storage Capacity Manager (SCM)

Unmodified
applications run on
top of SALSA
devices

Controller: Policy

maintains PBA-to-
LBA mapping and
performs 10

Controllers

SCM: space
management

Maintains
allocation queues,
performs GC

SALSA technologies

= SALSAruns on:
a) Host-managed SSDs/HDDs: SALSA has full control of the drive
b) Regular SSDs: SALSA implicitly forces the SSD controller to not do Garbage Collection

= SALSA implements data placement and garbage collection above the drive

» State-of-the-art GC algorithms
= Recurring pattern detection
= Trim support

» Log-Structured data layout
» Data Segregation based on write heat

= RAID5-equivalent protection without R-M-W

= Small writes placed in conventional zones (SMR) Additional features

= Optimized placement for read-hot data = Write throttling

= Workload isolation & I/O stream separation = Optional in-memory caching

= Thin provisioning » Data reduction (experimental)
= RDMA interface

10

11

Containerized MySQL (1 device)

4 multithreaded MySQL containers deployed over 1 SSD device
Sysbench to execute an OLTP workload

= partitions over raw device + ext4
= partitions over raw device + f2fs (a log-structured filesystem)
» Salsa devices + ext4

Containerized MySQL (1 device)

RAW F2FS SALSA
tps avg 95% tps avg 95% tps avg 95%
22.21 180ms| 651ms 25.6 157/ms| 599ms 37.4 107/ms| 266ms
21.3] 188ms| 655ms 25.6) 156ms| 599ms 37.60 106ms| 264ms
21.2] 188ms| 656ms 25.5 157ms| 596ms 37.7, 106ms| 264ms
21.2] 188ms| 654ms 25.6) 157/ms| 603ms 39.1 102ms| 258ms

= SALSA improves throughput and average latency by 68% vs raw
= SALSA improves throughput by 47% and reduces tail latency by 145% vs FS2FS

13

Containerized MySQL (RAID)

= Same experiment as before but using 4 SSDs In:

= Linux RAID-5 MD

= SALSA RAID-5 equivalent
— SALSA can guarantee full-stripe writes with a small persistent buffer

14

Containerized MySQL (RAID)

Linux MD SALSA
tps avg 95\% tps avg 95%
8.1 2.0s 5.35) 287.2] 55.7ms 99.5ms
8.1 2.0s 5.35f 290.5 55.1ms| 98.4ms
8.3 1.9s 5.25 286.5 55.9ms 99.9ms
7.8 2.1s 5.6sf 291.1} 55.0ms| 98.2ms

= SALSA improves throughput and average latency by x35.4 and x36.8 vs Linux md

= MD has tail latency of seconds!

Endurance improvement

= Multiple runs of 4KB random writes on a Samsung 850 EVO SSD,

» At each iteration (= 10 FDWs) we do a low-level format (LLF) of the device.

= Alternate between runs with SALSA and runs without SALSA

500 -

400 -

w

)

o
!

Device Wear

N

o

o
!

100

15

-+-Raw

-=-SALSA

LLLF: Low Level Format

With SALSA, the same workload
incurred 4.6x less device wear

The result was repeatable over
time, and across devices

Write tput (MiB/s)

Raw 15.9

Full Device Writes

60

SYA\RSYAN 37/.7

16

Object store

= Object store (swift) on a system with potentially 100s of SMR drives
— Intended for large objects

» Salsa’s mapping is a flat table with 4 bytes per entry
— 4KiB mappings: 1GiB RAM per 1TiB
— 64KiB mappings:64MiB RAM per 1TiB
« But: might cause Read-Modify-Write (RMW) updates

= [nitial evaluation with 64KiB mappings showed reduced performance due to RMW operations

17

Object store: Dual Mapping controller

= Sources for RMW operations:
— Unaligned data
— Filesystem metadata
— Small percentage, but did cause a performance hit

= Dual-mapping controller
— Sparse mapping for 4KiB pages (hash table)
— Dense mapping for 64KiB pages
— Read operations check sparse mapping first
— Write operations select mapping based on operation size

18

Object store: Dual Mapping controller

= Evaluate using the swift object store,
and an a SMR drive

— Emulating high load using high
concurrency (32 green threads)

= Random PUTs, UPDATES, and GETs

= 128KIiB objects:
— x6.4 PUTs
— x4.1 UPDATES

80— object size!: 128.0 kiB | 80— object sizg: 10.0 MiB |
: |3 raw 1 raw
70+ S I)| S — S
I salsa 5
60 14 60 |
o o
= 50r 12 50
2 40 1 3 40t
- L
S 30 1 530
o o
= 20t 1E 20t
10 10r
0 0
PUT UPDATE GET PUT UPDATE GET

Figure 7: Swift storage server throughput for different op-
erations, comparing the raw device and SALSA.

Hybrid (SMR+SSD) controller for video server

» Video service for user-generated content (e.g., YouTube)
— Videos are typically short and disks cannot reach their full bandwidth
— Huge number of videos uploaded daily: requires cost-effective storage (SMRS)
— Small number of popular videos: can move popular videos into faster storage (SSDs)

= Hybrid Controller

— SCM: two allocation streams one for Flash and one for SMR
— Default: SMR
— “Hot” pages are relocated to Flash
« Temperature: 64-bit value for every 256 pages
« Threshold, after which pages are relocated to Flash
* re-use GC relocation mechanisms
— No need to modify application

20

Hybrid (SMR+SSD) controller for video server

= Benchmark: filebench with video-server macro-workload

— Active set: frequently read files
— Passive set: new files are added

RD (MiB/sec) WR (MiB/sec)
raw 4.8 10.1
salsa 6.2 10.1
salsa-hybrid 118.5 10.0

21

Conclusion

SALSA is a host TL that:

= |Improves performance and durability of SSDs
= |Improves performance of (all types of) SMRs
= Allows application-specific 1O policies

= Allows combining different storage types

Thank youl!

