
1

Elevating Commodity storage with the
SALSA host translation layer

Nikolas Ioannou, Kornilios Kourtis, Ioannis Koltsidas

IBM Research – Zurich

MASCOTS 2018

2

Storage diversity

▪ Multiple technologies offering different levels of performance at different costs

▪ Technologies

– SMRs

– HDDs

– NAND-Flash SSDs

– NVM

▪ Systems might require a combination of different technologies to meet their requirements

▪ NAND-flash and SMRs are idiosyncratic

3

Idiosyncratic media

▪ No random updates

▪ NAND Flash

– Pages need to be erased before programmed

– Erase is performed in blocks of 100s or 1000s of pages

▪ SMR drives fit more tracks in the surface of a disk,

but can only be written sequentially

– Drives are split into zones

4

Device Translation Layer (TL)

▪ OS and applications are not (traditionally) built to handle idiosyncratic

▪ Device comes with a translation layer that present to software a device that can perform

updates to random locations

▪ Translation layer

– LBA to PBA mapping

– Out-of-place sequential writes

– Garbage Collection (GC)

– IO amplification

• A write to an LBA might cause additions Reads or Writes

to the PBA

Physical Address Space (PBAs)

Logical Address Space (LBAs)

Translation Layer (LBA →PBA)

OS

d
e
v
ic

e

5

Device TLs are inefficient

Device Driver

Device TL Device TLDevice TL

Database Object store

Lack visibility

across

multiple

devices

Cannot be

adapted to

specific

application

requirements

Limited

resources in

commodity

devices

Volume Management

Filesystem

Device Driver Device Driver

volumevolume

6

The trouble with low-cost Flash SSDs

▪ Low-cost Flash suffers from high write latency, low endurance

▪ Limited resources, simple controllers to keep the cost as low as

possible (~ $0.23 /GB!)

▪ Therefore, they only employ simple Flash management

- Sufficiently good read performance

- But, limited write endurance, terrible write performance

Can’t we just use low-cost SSDs?

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0 100 200 300 400

L
a

te
n

c
y
 (

m
s

e
c

)

Throughput (kIOPS)

100% Reads
(4KiB random)

RAID0

RAID5
0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0 20 40 60 80 100 120

L
a

te
n

c
y
 (

m
s

e
c

)

Throughput (kIOPS)

80% Reads / 20% Writes
(4KiB random)

RAID0

RAID5

+ 20% writes

fio --filename=/dev/mapper/ssd --runtime=14400s --time_based --ioengine=psync --direct=1 --thread --norandommap --rw=randrw –rwmixread=80 --bs=4k --numjobs=32 --iodepth=1 --sync=1

>250k IOPS

@ 230usec

Raw low-cost SSDs are

of limited use in a

datacenter

7

SoftwAre Log Structured Array

Device Driver

Device TL Device TLDevice TL

Database Object store

Filesystem

Device Driver Device Driver

SALSA effectively

disables Device TL

GC by making its

job trivial.

Has visibility to all

devices and their

properties

Can be adapted

and specialized to

specific application

requirements
SALSA implements

its own GC and

LBA to PBA

mapping. Writes

sequentially to

devices

Salsa deviceSalsa device

8

What SALSA can do

SSDs

▪ Improve performance

▪ Improve endurance

▪ Enable commodity SSDs

to be used in the data-

center.

SMRs

▪ Host-managed

▪ Host-aware

▪ Drive-managed

▪ Improved performance

▪ Specialized controller

(dual-mapping) for object

stores deployed on top of

filesystem

Mixed workloads

▪ Different application

policies on top of a

common pool of storage

Combine storage types

▪ Specialized controller that

combines SSDs + SMRs

▪ Unmodified application

(e.g., video server)

9

Controller

(L2P, IO)

Controller: Policy

maintains PBA-to-

LBA mapping and

performs IO

SALSA Architecture

GC, Allocation

Controller

(L2P, IO)

/dev/salsa-obj /dev/salsa-db

Filesystem Database

Object store

Storage Capacity Manager (SCM)

C
o

n
tr

o
ll

e
rs

Allocate storage

space. (Can

request specific

storage type.)

Request relocation

for GC (upcall).

(Controller needs

to update L2P)

SCM: space

management

Maintains

allocation queues,

performs GC

Unmodified

applications run on

top of SALSA

devices

10

SALSA technologies
▪ SALSA runs on:

a) Host-managed SSDs/HDDs: SALSA has full control of the drive

b) Regular SSDs: SALSA implicitly forces the SSD controller to not do Garbage Collection

▪ SALSA implements data placement and garbage collection above the drive

Data Placement
▪ Log-Structured data layout

▪ Data Segregation based on write heat

▪ RAID5-equivalent protection without R-M-W

▪ Small writes placed in conventional zones (SMR)

▪ Optimized placement for read-hot data

▪ Workload isolation & I/O stream separation

▪ Thin provisioning

Garbage Collection
▪ State-of-the-art GC algorithms

▪ Recurring pattern detection

▪ Trim support

Additional features
▪ Write throttling

▪ Optional in-memory caching

▪ Data reduction (experimental)

▪ RDMA interface

11

Containerized MySQL (1 device)

▪ 4 multithreaded MySQL containers deployed over 1 SSD device

▪ Sysbench to execute an OLTP workload

▪ partitions over raw device + ext4

▪ partitions over raw device + f2fs (a log-structured filesystem)

▪ Salsa devices + ext4

12

Containerized MySQL (1 device)

RAW F2FS SALSA

tps avg 95% tps avg 95% tps avg 95%

22.2 180ms 651ms 25.6 157ms 599ms 37.4 107ms 266ms

21.3 188ms 655ms 25.6 156ms 599ms 37.6 106ms 264ms

21.2 188ms 656ms 25.5 157ms 596ms 37.7 106ms 264ms

21.2 188ms 654ms 25.6 157ms 603ms 39.1 102ms 258ms

▪ SALSA improves throughput and average latency by 68% vs raw

▪ SALSA improves throughput by 47% and reduces tail latency by 145% vs FS2FS

13

Containerized MySQL (RAID)

▪ Same experiment as before but using 4 SSDs in:

▪ Linux RAID-5 MD

▪ SALSA RAID-5 equivalent

– SALSA can guarantee full-stripe writes with a small persistent buffer

14

Containerized MySQL (RAID)

Linux MD SALSA

tps avg 95\% tps avg 95%

8.1 2.0s 5.3s 287.2 55.7ms 99.5ms

8.1 2.0s 5.3s 290.5 55.1ms 98.4ms

8.3 1.9s 5.2s 286.5 55.9ms 99.9ms

7.8 2.1s 5.6s 291.1 55.0ms 98.2ms

▪ SALSA improves throughput and average latency by x35.4 and x36.8 vs Linux md

▪ MD has tail latency of seconds!

15

Endurance improvement

0

100

200

300

400

500

0 10 20 30 40 50 60

D
e
v
ic

e
 W

e
a
r

Full Device Writes

Raw

SALSA

LLF: Low Level Format

LLF
LLF

LLF

LLF

LLF

139 units

30 units

▪ With SALSA, the same workload

incurred 4.6x less device wear

▪ The result was repeatable over

time, and across devices

▪ Multiple runs of 4KB random writes on a Samsung 850 EVO SSD,

▪ At each iteration (= 10 FDWs) we do a low-level format (LLF) of the device.

▪ Alternate between runs with SALSA and runs without SALSA

Write tput (MiB/s)

Raw 15.9

SALSA 37.7

16

Object store

▪ Object store (swift) on a system with potentially 100s of SMR drives

– Intended for large objects

▪ Salsa’s mapping is a flat table with 4 bytes per entry

– 4KiB mappings: 1GiB RAM per 1TiB

– 64KiB mappings:64MiB RAM per 1TiB

• But: might cause Read-Modify-Write (RMW) updates

▪ Initial evaluation with 64KiB mappings showed reduced performance due to RMW operations

17

Object store: Dual Mapping controller

▪ Sources for RMW operations:

– Unaligned data

– Filesystem metadata

– Small percentage, but did cause a performance hit

▪ Dual-mapping controller

– Sparse mapping for 4KiB pages (hash table)

– Dense mapping for 64KiB pages

– Read operations check sparse mapping first

– Write operations select mapping based on operation size

18

Object store: Dual Mapping controller

▪ Evaluate using the swift object store,

and an a SMR drive

– Emulating high load using high

concurrency (32 green threads)

▪ Random PUTs, UPDATEs, and GETs

▪ 128KiB objects:

– x6.4 PUTs

– x4.1 UPDATEs

19

Hybrid (SMR+SSD) controller for video server

▪ Video service for user-generated content (e.g., YouTube)

– Videos are typically short and disks cannot reach their full bandwidth

– Huge number of videos uploaded daily: requires cost-effective storage (SMRs)

– Small number of popular videos: can move popular videos into faster storage (SSDs)

▪ Hybrid Controller

– SCM: two allocation streams one for Flash and one for SMR

– Default: SMR

– “Hot” pages are relocated to Flash

• Temperature: 64-bit value for every 256 pages

• Threshold, after which pages are relocated to Flash

• re-use GC relocation mechanisms

– No need to modify application

20

Hybrid (SMR+SSD) controller for video server

▪ Benchmark: filebench with video-server macro-workload

– Active set: frequently read files

– Passive set: new files are added

RD (MiB/sec) WR (MiB/sec)

raw 4.8 10.1

salsa 6.2 10.1

salsa-hybrid 118.5 10.0

21

Conclusion

SALSA is a host TL that:

▪ Improves performance and durability of SSDs

▪ Improves performance of (all types of) SMRs

▪ Allows application-specific IO policies

▪ Allows combining different storage types

Thank you!

