
Elevating commodity storage with the SALSA host translation layer

Nikolas Ioannou Kornilios Kourtis
IBM Research, Zurich

{nio,kou,iko}@zurich.ibm.com

Ioannis Koltsidas

Abstract—To satisfy increasing storage demands in both
capacity and performance, industry has turned to multiple
storage technologies, including Flash SSDs and SMR disks.
These devices employ a translation layer that conceals the
idiosyncrasies of their mediums and enables random access.
Device translation layers are, however, inherently constrained:
resources on the drive are scarce, they cannot be adapted to
application requirements, and lack visibility across multiple
devices. As a result, performance and durability of many
storage devices is severely degraded.

In this paper, we present SALSA: a translation layer that
executes on the host and allows unmodified applications to
better utilize commodity storage. SALSA supports a wide
range of single- and multi-device optimizations and, because
is implemented in software, can adapt to specific workloads.
We describe SALSA’s design, and demonstrate its significant
benefits using microbenchmarks and case studies based on
three applications: MySQL, the Swift object store, and a video
server.

I. INTRODUCTION

The storage landscape is increasingly diverse. The market
is dominated by spinning magnetic disks (HDDs) and Solid
State Drives (SSDs) based on NAND Flash. Broadly speak-
ing, HDDs offer lower cost per GB, while SSDs offer bet-
ter performance, especially for read-dominated workloads.
Furthermore, emerging technologies provide new tradeoffs:
Shingled Magnetic Recording (SMR) disks [1] offer in-
creased capacity compared to HDDs, while Non-Volatile
Memories (NVM) [2] offer persistence with performance
characteristics close to that of DRAM. At the same time,
applications have different requirements and access patterns,
and no one-size-fits-all storage solution exists. Choosing
between SSDs, HDDs, and SMRs, for example, depends on
the capacity, performance and cost requirements, as well
as on the workload. To complicate things further, many
applications (e.g., media services [3], [4]) require multiple
storage media to meet their requirements.

Storage devices are also frequently idiosyncratic. NAND
Flash, for example, has a different access and erase granu-
larity, while SMR disks preclude in-place updates, allowing
only appends. Because upper layers (e.g., databases and
filesystems) are often not equipped to deal with these
idiosyncrasies, translation layers [5] are introduced to enable
applications to access idiosyncratic storage transparently.
Translation layers (TLs) implement an indirection between
the logical space as seen by the application, and the physical

storage as exposed by the device. A TL can either be im-
plemented on the host (host TL) or on the device controller
(drive TL). It is well established that, for many workloads,
drive TLs lead to suboptimal use of the storage medium.
Many works identify these performance problems, and try
to address them by improving the controller translation layer
[6], [7], or adapting various layers of the I/O software stack:
filesystems [8]–[10], caches [11], [12], paging [13], and key-
value stores [14]–[18].

In agreement with a number of recent works [19]–[21], we
argue that these shortcomings are inherent to drive TLs, and
advocate placing the TL on the host. While a host TL is not a
new idea [22], [23], our approach is different from previous
works in a number of ways. First, we focus on commodity
drives, without dependencies on specific vendors. Our goal
is to enable datacenter applications to use cost-effective
storage, while maintaining acceptable performance. Second,
we propose a unified TL framework that supports different
storage technologies (e.g., SSDs, SMRs). Third, we argue
for a host TL that can be adapted to different application
requirements and realize different tradeoffs. Finally, we
propose a TL that can virtualize multiple devices, potentially
of different types. The latter allows optimizing TL functions
such as load balancing and wear leveling across devices,
while also addressing storage diversity by enabling hybrid
systems that utilize different media.

SALSA (SoftwAre Log Structured Array) implements the
above ideas, following a log-structured architecture [24],
[25]. We envision SALSA as the backend of a software-
defined storage system, where it manages a shared storage
pool, and can be configured to use workload-specific policies
for each application using the storage. In this paper, we focus
on the case where SALSA is used to run unmodified appli-
cations by exposing a Linux block device that can be either
used directly, or mounted by a traditional Linux filesystem.
The contribution of our work is a novel host TL architecture
and implementation that supports different media and allows
optimizing for different objectives. Specifically:

• SALSA achieves substantial performance and dura-
bility benefits by implementing the TL on the host
for single- and multi-device setups. When deploy-
ing MySQL database containers on commodity SSDs,
SALSA outperforms the raw device by 1.7× on one
SSD and by 35.4× on a software RAID-5 array.

• SALSA makes efficient use of storage by allowing

application-specific policies. We present a SALSA pol-
icy tailored to the Swift object store [26] on SMRs that
outperforms the raw device by up to a factor of 6.3×.

• SALSA decouples space management from storage
policy. This enables SALSA to accommodate different
applications, each with its own policy, using the same
storage pool. This allows running MySQL and Swift
on the same storage with high performance and a low
overhead.

• SALSA embraces storage diversity by supporting mul-
tiple types of devices. We present how we combine
SMRs and SSDs to speedup file retrieval for a video
server workload (where adding an SSD improves read
performance by 19.1×), without modifying the appli-
cation.

The remaining of the paper is organized as follows. We
start with our a brief overview of idiosyncratic storage and
our motivation behind SALSA (§II). We continue with a
description of the design of SALSA (§III), discuss how we
satisfy specific application workload requirements (§IV), and
evaluate our approach (§V). Finally, we discuss related work
(§VI) and conclude (§VII).

II. BACKGROUND AND MOTIVATION

In this section, we provide a brief background on Flash-
based SSDs (§II-A) and Shingled Magnetic Recording
(SMR) disks (§II-B), analyze the limitations of commodity
drive TLs (§II-C), and argue for a unified host TL architec-
ture (§II-D).

A. Flash-based SSDs

Flash memory fits well in the gap between DRAM and
spinning disks: it offers low-latency random accesses com-
pared to disks at a significantly lower cost than DRAM.
As a result, its adoption is constantly increasing in the data
center [27]–[29], where it is primarily deployed in the form
of SSDs. Nevertheless, Flash has unique characteristics that
complicate its use [30]. First, writes are significantly more
involved than reads. NAND Flash memory is organized in
pages, and a page needs to be erased before it can be pro-
grammed (i.e., set to a new value). Not only programming a
page is much slower than reading it, but the erase operation
needs to be performed in blocks of (hundreds or even
thousands of) pages. Therefore, writes cannot be done in-
place, and also involve a high cost as block erasures are two
orders of magnitude slower than reading or programming
a page. Second, each Flash cell can only sustain a finite
number of erase cycles before it wears out and becomes
unusable.

Flash translation layers (FTLs) [6] are introduced to
address the above issues. In general, an FTL performs writes
out-of-place, and maintains a mapping between logical and
physical addresses. When space runs out, invalid data are
garbage collected, and valid data are relocated to free blocks.

To aid the garbage collection (GC) process, controllers
keep a part of the drive’s capacity hidden from the user
(overprovisioning). The more space that is overprovisioned,
the better the GC performs.

B. SMR disks

Magnetic disks remain the medium of choice for many
applications [4], mainly due to low cost. However, magnetic
recording is reaching its density scaling limits. To increase
disk capacity, a number of techniques have been proposed,
one of which, Shingled Magnetic Recording (SMR) [1],
[31], has recently become widely available [32], [33]. SMRs
gain density by precluding random updates. The density im-
provement is achieved by reducing the track width, thereby
fitting more tracks on the surface of a platter, without
reducing the write head size. As a result, while a track can be
read as in conventional disks, it cannot be re-written without
damaging adjacent tracks.

SMR disks are typically organized into zones. Zones are
isolated from each other by guards, so that writes to a
zone do not interfere with tracks on other zones. All the
writes within a zone must be done in strict sequential order;
however, multiple zones can be written to independently.
These zones are called sequential zones. Drives, also, typi-
cally include a small number of conventional zones, where
random updates are allowed.

Three categories of SMR drives exist based on where the
TL is placed: drive-managed (DM), host-managed (HM),
and host-aware (HA) SMRs [34]. In drive-managed disks,
SMR complexities are fully hidden by a drive TL. On the
other extreme, HM drives require a host TL to guarantee that
writes within a zone will be sequential. HM drives provide
a number of commands to the host, e.g., to reset a zone
so that it can be re-written and to retrieve the drive’s zone
information. HA SMRs offer a compromise between DM
and HM: they expose control commands, but can operate
without a host TL.

C. Limitations of drive TLs

Demand to reduce costs per GB raises barriers to drive
TL performance. SSD vendors increasingly offer commodity
drives of higher densities at lower prices, without adding
hardware resources (e.g., memory and compute) on the
controller to deal with the extra capacity. Performance
degrades further due to the use of consumer-grade Flash
and low overprovisioning, as is typical in commodity SSDs.
Furthermore, drive TLs are required to support a number
of different workloads, and end up making compromises.
Communicating application-specific hints to the drive is
hard, if not impossible.

We illustrate the limitations of drive TLs on commodity
SSDs by applying a random workload on a widely-used
drive (after low-level formatting it) for tens of hours until
performance stabilizes (see §V-A1 for details). We perform

16 33

439

0

100

200

300

400

500

4 KiB 1 MiB 1 GiBW
rit

e
Ba

nd
w

id
th

 (
M

B/
s)

I/O Block Size
(a) Write Bandwidth

10.6

4.8

0.6
0

5

10

4 KiB 1 MiB 1 GiB
W

ea
r-

ou
t

(%
 o

f d
ev

ic
e

en
du

ra
nc

e)
I/O Block Size

(b) Wear-out after 10 device writes

Figure 1: Random writes with a block size of 4KiB, 1MiB,
and 1GiB

the experiment for three block sizes: 4KiB, 1MiB, and 1GiB.
Fig. 1a shows the resulting (stable) write throughput, and
Fig. 1b shows the wear induced to the device (as reported by
SMART) after 10 full device writes. Our experiment, effec-
tively, compares the drive TL performance under a random
workload (4KiB) versus the ideal performance (1GiB), as
well as an intermediate performance point (1MiB). A larger
block size minimizes the need for the drive TL to perform
GC: as the I/O size increases so does the probability that
a write will entirely invalidate the Flash blocks it touches,
eliminating the need for relocations. The drive TL fails to
achieve high write bandwidth under unfavourable access
patterns, only sustaining about 16MiB/s for 4KiB blocks,
and 33MiB/s for 1MiB blocks. Interestingly, a block size of
1MiB is not large enough to bring the write performance
of the drive to its ideal level; block sizes closer to the GiB
level are required instead, which better reflects the native
block size of modern dense Flash SSDs [35]. Furthermore,
according to the SSD’s SMART attributes, the write amplifi-
cation for the 1GiB writes was 1.03×, whereas for the 4KiB
writes it was 18.24×, and 8.26× for 1MiB writes. We found
that other commodity SSDs exhibit similar behavior, with
write amplification factors as high as 50×. SMR drive TLs
suffer from the same limitations as FTLs. As an example, we
measured less than 200 KiB/s of random write bandwidth
for 64KiB random writes to a drive-managed SMR disk
(§V-A2). Overall, there seems to be significant room for
improvement even for a single drive by employing a host TL
that does its own relocations (additional reads and writes),
but always writes sequentially to the device.

D. Why a host TL?

Vendors prioritize cost over performance for commodity
drives, resulting in drives that are unfit for many applications
that require high performance in terms of throughput and la-
tency. Even simple techniques to alleviate this problem (e.g.,
configurable overprovisioning) are non-trivial to implement
and rarely applied in practice.

We argue that a host TL can address these issues and

improve efficiency. By transforming the user access pattern
to be sequential, a host TL can realize significant perfor-
mance and endurance benefits, enabling commodity drives
to be used for datacenter applications even under demanding
performance requirements. Furthermore, having visibility
across multiple devices enables optimizations that are not
possible from within a single drive. An evaluation of the
Aerospike NoSQL store [36], for example, has shown the
advantages of managing arrays of Flash SSDs as opposed
to individual drives (e.g., by coordinating GC cycles across
multiple devices).

Moreover, maximizing I/O performance for many appli-
cation depends on exploiting workload properties. While
this is difficult to do in a device TL, a host TL offers
many such opportunities (e.g., improving performance by
reducing persistence guarantees or sacrificing space). A host
TL should be built as a framework that supports multiple
types of storage, different policies and algorithms, and a
wide range of configuration options. A host TL can, also,
be extended and improved over time, allowing incremental
adoption of advanced techniques, new storage technologies,
and different tradeoffs.

Finally, and perhaps more importantly, a host TL allows
combining multiple devices to build hybrid storage systems.
By managing arrays of devices at the host, as opposed to
a single device in the case of a drive TL, the TL can offer
additional improvements by making global decisions, e.g.,
about balancing load and wear across devices. As the storage
landscape increasingly diversifies, and applications require
the use of different storage technologies, the existing TL
indirection can be used for implementing hybrid storage
policies. Under this scenario, a host TL is also applicable to
technologies that are not, necessarily, idiosyncratic.

III. SALSA DESIGN

SALSA makes three principal design choices. First, it
is log-structured [24], [25]. Among other benefits, this
allows it to deal with storage idiosyncrasies. By only writing
big sequential segments, SALSA renders the drive’s GC
irrelevant, as its task becomes trivial. When space runs
out, SALSA does its own GC. Second, SALSA supports
multiple storage types, and can combine them to build hybrid
systems. Finally, SALSA follows a modular design so that
it can be used as a framework for implementing a variety
of policies and algorithms, enabling adaptability to different
requirements.

From the perspective of the user, SALSA exposes block
devices that can be used transparently by applications, e.g.,
by running a database directly on the device, or by creating
a filesystem and running an application on top. An important
benefit of SALSA is that it does not require any application
modifications.

There are two main components in SALSA: the storage
capacity manager (SCM), which is responsible for managing

.....

allocator

..

GC

..

allocator

.

Controller
(L2P, IO)

.

/dev/salsa-obj

.

Filesystem

.

Obj. store

.

Controller
(L2P, IO)

.

/dev/salsa-db

.

Database

.....................per-type free segment queues
(Flash, SMR sequential etc.)

..

free segments

.

SCM

.......

¶

.

¶

.

staging
queues

........

¶

...

¶

.

staging
queues

...........

¸

.

¸

.

·

.

·

.

·

.

·

..

¹

.

Calls:

.

¶ alloc segment

.

· alloc/inval. grains

.

¸ relocate grains

.

¹ free segment

.

Figure 2: SALSA Architecture and allocation calls.

the underlying storage, and one or more controllers that
operate on the SCM (Fig. 2). SCM is a common substrate
that implements storage provisioning to controllers, GC,
and other common functions. Controllers are responsible
for implementing the storage policy, performing I/O, and
mapping the logical (application) space to the physical space
(L2P).

A. Storage Capacity Manager

Generally, the SCM manages multiple storage devices. To
capture different device properties, SALSA defines appropri-
ate storage types: NVM, Flash, HDD, SMR conventional,
SMR sequential. At initialization, SCM identifies the type
of its devices, and creates an address space that combines
them. This address space is split into different areas, each
characterized by a storage type. The boundaries of these
areas are not necessary device boundaries: an SMR drive
with both conventional and sequential zones, for example,
is split into two different areas, one for each type of zone.
The SCM address space is not exposed to the controllers.

SALSA can combine multiple devices linearly (i.e., ap-
pending one after another) or in a RAID-0, -1, or -5 con-
figuration. Based on the configuration, a set of appropriate
functions for performing I/O is provided to the storage
controllers. For RAID-5, SALSA requires a small non-
volatile memory buffer which is used to store the parity
for the currently open stripe. For instance, the Persistent
Memory Region of an NVMe SSD can be used for that
purpose [37]. Parity is accumulated into that buffer as the
stripe is being filled, and is committed to storage when it
gets full. Thereby, SALSA avoids expensive read-modify-
write operations, which are required with traditional (i.e.,
non log-structured) RAID-5.

The SCM physical storage space is divided into segments,
large (e.g., 1GiB) contiguous regions of a single storage
type. A segment can be in one of the following states: free:
owned by the SCM, staged : used for storage allocation for
a controller, or allocated : fully used, owned by a controller,
and available for GC. Once allocated, a segment can only
be used by a single controller.

Allocators allocate segments on behalf of the controllers
via an interface (Fig. 2, ¶) that allows for specification of
(hard and soft) constraints on the segment’s storage type.
To support this interface, SCM maintains multiple allocation
queues that segregate segments based on the backing storage
type. Each segment is divided into grains, the configurable
smallest unit of allocation (e.g., 4KiB, 8KiB, etc.). Con-
trollers allocate and free storage in grains (·). Allocators
maintain a number of staged segments and allocate space
sequentially within them. We call this mechanism an alloca-
tion stream. Controllers can have multiple allocation streams,
allowing for data segregation. SALSA can, for example,
segregate writes by their update-frequency (“heat”), as well
as segregate user and GC (i.e., relocation) writes. Each
stream has its own constraints for segment allocation.

When a segment becomes full, its state transits to allo-
cated and becomes a relocation candidate for the GC. For
each segment, SALSA tracks the number of valid grains.
Initially, all grains in a segment are valid. As data become
invalid, controllers decrement the number of valid grains.
When no valid grains remain, the segment is freed and
returns to the SCM. Internal fragmentation can lead to
inability to allocate new segments, even if there is enough
free space. As is common in log-structured systems, we free
space with a background GC process.

B. Garbage Collection (GC)

GC is responsible for relocating fragmented data to pro-
vide free segments. The SCM executes the GC algorithm
that selects the best segments to relocate; GC operates across
all devices but independently for each storage type. When
a segment is selected, GC (up)calls the owning controller
to relocate the valid data of this segment to a new one
(¸). The GC is not aware of which grains are valid and
which are not, nor the segment geometry in terms of page
size, metadata, etc. This is left to the controller. Once the
controller relocates data, it frees the corresponding grains,
and, eventually, segments are freed and returned to their
corresponding free queues (¹).

GC maintains a number of spare segments for relo-
cation, because otherwise it will not be able to provide
free segments for allocation. As with most TLs, SALSA
overprovisions storage: it exposes only part of the device
total capacity to the user, and uses the rest for GC.

Initially, all the device segments are free, and SALSA
redirects user writes to free segments. When free segments
run out, however, SALSA GC needs to perform relocations

to clean up segments. Relocations cause I/O amplification
and the underlying devices serve both user and relocation
traffic. SALSA uses two (configurable) watermarks: a low
(high) watermark to start (stop) GC. For SMR sequential
segments of host-managed drives, we reset the zone write
pointers of a segment before placing it in the allocation
queue. SALSA uses a generalized variant of the greedy [38]
and circular buffer (CB) [24] algorithms, which augments a
greedy policy with the aging factor of the CB. This aging
factor improves the performance of the algorithm under a
skewed write workload without hindering its performance
under random writes.

C. LSA controller

SALSA supports multiple frontends, but in this paper we
focus on the Linux kernel frontend where each controller
exposes a block device. These controllers maintain a map-
ping between user-visible logical block addresses (LBAs),
and backend physical block addresses (PBAs). We refer to
them as Log Structured Array (LSA) [25] controllers. LSA
controllers map LBAs to PBAs, with a flat array of 32
(default) or 64 bits for each entry (compile-time parameter).
Larger blocks (or pages) require less space for the table,
but lead to I/O amplification for writes smaller than the
page size (e.g., read-modify-write operations for writes).
For SSDs, the default page size is 4KiB, allowing us to
address 16TiB (64ZiB for 64 bit entries) storage; for SMR
drives, the default page size is 64KiB. Note that the page
size has to be a multiple of the SCM grain size, in order
to maintain interoperability with the GC and allocators. The
mapping table is maintained in-memory, with an overhead
of 4B per LBA (e.g., 1GiB DRAM per 1TiB of storage for
4KiB pages, 512MiB for 8KiB, etc.). A back-pointer table of
PBA-to-LBA mappings is maintained per segment for GC
and restore operations, and it is either always in-memory
or is constructed on-demand by scanning the LBA-to-PBA
table, based on a run-time configuration parameter.

Accesses and updates to the mapping table are done in
a thread-safe lock-free manner using compare-and-swap. A
read operation will typically read the table, perform a read
I/O operation to fetch the necessary data, and return them to
the user. A write operation will allocate new space, perform
a write I/O operation to write user data to this space, and
update the table entry. A relocation operation on a PBA will
read the PBA-to-LBA back-pointer, check that the LBA stills
maps to the PBA in question, read the data, allocate new
space, write the valid data to a new location, and update the
table only if the LBA still maps to the relocated PBA.

For sequential segments of host-managed SMRs we force
the allocated pages to be written sequentially to the drive,
to avoid drive errors. We do so via a thread that ensures
that all writes to these segments happen in-order. This is
not required for other storage types (e.g., SSDs), and we do
not use the I/O thread for them.

D. Persisting metadata

The LSA controller we described so far maintains the
LBA-to-PBA mapping in memory and dumps it to storage
upon shutdown. To protect against crashes, controllers log
updates to the mapping table. Under this scheme, a segment
contains two types of pages: pages written by the user,
and metadata pages that contain mapping updates. In the
absence of flush operations (e.g., fsync), one metadata
page is written for every m data pages (m is configurable
at run-time for each controller). In case of a flush, a
metadata page is written immediately. Therefore, SALSA
provides the same semantics as traditional block devices that
use internal write buffers. The metadata flush is handled
differently for different storage types. For SMR storage,
we pad segments so we adhere to the sequential pattern.
For Flash, we update the metadata page in-place; although
this might break the strict sequentiality of writes at the
SSD level, flush operations are rare, and did not noticeably
affect performance in any of our experiments. SALSA also
maintains a configuration metadata page at each device, and
a configuration metadata page per segment. The metadata
overhead depends on the value of the m, on the segment
size, and on the grain size. For 1GiB segments, m = 512
(default value), and the smallest possible grain size (4KiB),
it amounts to 0.2% of the total capacity.

Upon initialization, we first check whether SALSA was
cleanly stopped using checksums and unique session iden-
tifiers written during the LBA-to-PBA dumps. If a clean
shutdown is detected, the mapping of each controller is
restored. Otherwise, SALSA scans for metadata pages across
all valid segments belonging to the controller, and restores
LBA-to-PBA mappings based on back-pointers and times-
tamps. The SCM coordinates the restore process: it iterates
over segments in parallel and upcalls owning controllers to
restore their mapping.

E. Implementation notes

The core of SALSA is implemented as a library that can
run in kernel- or user-space. Different front-ends provide
different interfaces (e.g., a block device, or a key-value
store) to the user. The Linux kernel block device interface is
implemented on top of the device-mapper (DM) framework.
SALSA controllers are exposed as DM block devices. Any
I/O to these devices is intercepted by the DM and forwarded
to the SALSA kernel module, which in turn remaps the
I/O appropriately and forwards it to the underlying physical
devices. Devices can be created, managed and destroyed,
using the SALSA user interface tool (UI).

IV. ADAPTING TO APPLICATION WORKLOADS

Host TLs can be adapted to different application work-
loads, which we fully embrace in SALSA. At a first level,
SALSA offers a large number of parameters for run-time
configuration. Controllers parameters include: page size,

number of streams for user/GC writes, metadata stripe size,
sets to specify storage types each controller can use, etc.
Furthermore, SALSA includes multiple controller imple-
mentations, each with their own specific parameters. There
are also global parameters: grain size, GC implementation
(each with its own parameters), GC watermarks, etc. Users
are not expected to understand these details: the UI pro-
vides sane default values. In practice, we have found this
rich set of options extremely useful. Moreover, SALSA
can be extended to adapt to specific workloads and meet
different application requirements by implementing different
controllers. For example, an RDMA interface to NVM
storage has been implemented as a SALSA controller in
FlashNet [39]. Next, we discuss two controller designs that
we developed to address application-specific workloads.

A. Dual mapping controller

Our use-case is running an object store service on SMR
drives. Because object stores perform fault management and
load distribution, we run one SALSA instance per drive and
let the upper layer balance load and deal with faulty drives.
For object stores, 128KiB is considered a small object size
[40]. Therefore, we can set the page size to 64KiB, leading
to an overhead of 64MiB RAM per 1TiB of storage, making
SALSA feasible even for servers that can contain close to a
hundred drives [41].

During an initial evaluation, we observed a number of
read-modify-write operations that degraded performance.
We found two sources for this: writes that are not aligned to
64KiB, and filesystem metadata that are smaller than 64KiB.
Even though the number of these operations is relatively
small, they lead to a noticeable performance hit. We can
avoid read-modify-write operations with a controller that
supports a small number of sub-64KiB mappings, while
using 64K pages for everything else. To that end, we develop
a dual mapping controller that maintains two mappings: a
sparse mapping for 4KiB pages and a full mapping for
64KiB. A read operation checks whether the pages exist in
the sparse mapping first and if they do not, checks the full
mapping. A write operation will use the full mapping for
64KiB pages, and the sparse mapping for smaller pages.
If the sparse mapping does not contain a page during a
write and has no free locations, we perform a read-modify-
operation and update the full mapping.

B. Hybrid controller

Hybrid systems that make use of multiple storage types
allow tradeoffs that are not possible otherwise, offering great
opportunities for maximizing the system’s utility [3], [42].
As storage diversity increases, we expect the importance of
hybrid systems to rise. For example, vendors offer hybrid
drives (Solid State Hybrid Drives – SSHDs) that combine
a disk and NAND Flash within a single drive [43], [44].

These drives, however, have hard-coded policies and cannot
be repurposed.

Multi-device host TLs enable building better hybrid sys-
tems. In contrast to a device TL, a host TL can sup-
port multiple devices from different vendors. Moreover,
the indirection and mechanisms employed by a TL like
SALSA can be reused, enabling transparent data relocation
between different media. Finally, as we argued throughout
this paper, a host implementation offers additional flexibility,
as well as co-design potential [45], compared to a drive
implementation.

We consider a video service for user-generated content
(e.g., YouTube). Because user-generated videos are typically
short [46], and will get striped across a large number of
disks, reading them from a disk will result in reduced
throughput due to seeks. Because most views are performed
on a relatively small subset of the stored videos, there is
an opportunity to optimize the read throughput by moving
them into a faster medium. If the read working set does not
fit to DRAM, moving data to an SSD is the best solution.
The next section presents a SALSA controller implementing
this functionality.

For our hybrid controller, we configure two allocation
streams: one for fast storage (Flash) and one for slow storage
(disks). User and GC relocation writes always allocate from
the slow storage stream, while the fast storage stream is used
for relocating “hot” pages that are frequently accessed. To
determine the “hot” pages we maintain a data structure with
a “temperature” value of each (logical) page. We use an array
of 64-bit values sized at the number of logical pages divided
by 256 (configurable) to reduce memory overhead. Because
most files are stored sequentially on the block device, we
map consecutive pages to the same temperature.

At each read, we increase the temperature by one. Because
we use 64-bit values, overflowing is not an issue. If a page is
discarded, we set the temperature to zero. We also periodi-
cally (once a day) halve the temperature of all values. When
we increase the temperature, we check the new value against
a configurable threshold. If the threshold is reached and the
page is not already located into Flash storage, we schedule
a relocation. The relocation happens asynchronously on a
different (kernel) thread to avoid inducing overhead to the
read operation. If at any point something goes wrong (e.g.,
there are no available Flash physical pages, the mapping
or temperature changed in the meantime) the operation is
aborted.

V. EVALUATION

We start our evaluation (§V-A) discussing the performance
and durability benefits of SALSA using a random workload.
Subsequently, we show how SALSA features can benefit
real-world applications. In §V-B, we evaluate the benefits
of SALSA’s single- and multi-device optimizations using
MySQL containers on SSDs. In §V-C, we evaluate the

0 1000 2000 3000 4000 5000
Time (s)

0

20

40

60

80

100

120

140

160

T
h
ro

u
g
h
p
u
t

(M
iB

/s
)

raw (W)

salsa (W)

(a) 100% writes

0 1000 2000 3000 4000 5000
Time (s)

0

20

40

60

80

100

120

140

160

T
h
ro

u
g
h
p
u
t

(M
iB

/s
)

raw (W)

raw (R)

salsa (W)

salsa (R)

(b) 20% writes - 80% reads

Figure 3: 4KiB uniform random workload on an SSD

dual-mapping controller (§IV-A) using Swift. We use both
MySQL and Swift to evaluate the benefits of supporting
multiple application policies in §V-D. Finally, in §V-E, we
evaluate the hybrid controller (§IV-B) for a user-generated
video service.

SSD experiments (§V-A1, §V-B, §V-D) are performed on a
16 core dual-node x86-64 server with 128GiB RAM running
RHEL 7.2 with a 3.10 Linux kernel, using a widely-used
off-the-shelf 2.5” 1TB SATA NAND Flash SSD. The SMR
experiments (§V-A2, §V-C, §V-E) are performed on a 4 core
x86-64 server with 20GiB RAM running RHEL 6.6 with a
4.1 kernel, with a drive-managed 8TB SMR drive.

A. Microbenchmarks

To evaluate the benefits of placing the TL on the host,
we compare the performance and endurance of SALSA
against raw SSD and SMR drives under a sustained random
workload. We use this workload because random writes are
highly problematic for SSDs and SMRs for two reasons.
First, GC runs concurrently with user operations and causes
maximum disruption. Contrarily, in a bursty workload, GC
would have time to collect between bursts. Second, random
writes across the whole device maximize write amplification.
We use a microbenchmark that applies uniformly random
read and writes directly (using O_DIRECT) to the device.
We measure device throughput using iostat [47].

1) SSDs: We low-level format the drive before our exper-
iments. We overprovision SALSA with 20% of the SSD’s

write-only read-mostly
throughput W:100% R:80% W:20%
raw 15.9 ± 0.2 50.6 ± 0.9 12.6 ± 0.2
salsa 37.7 ± 0.9 72.5 ± 6.2 18.1 ± 1.5

Table I: Average throughput (MiB/s) and standard deviation
for two random workloads on an SSD: 100% writes and
80%/20% reads/writes. Block size is 4KiB.

capacity. We facilitate a fair comparison by performing
all measurements on the raw device on a partition with
equal size to the SALSA device. That is, we reserve 20%
space on the raw device which is never used after low-level
formatting the drive. The 20% overprovision was chosen to
offer a good compromise between GC overhead and capacity
utilization [48]. To measure stable state, we precondition the
device (both for raw and SALSA) by writing all its capacity
once in a sequential pattern, and once in a uniformly random
pattern. Subsequent random writes use different patterns.

We consider two workloads: write-only (100% writes)
and read-mostly (80% reads, 20% writes), both with 4KiB
blocks and queue depth (QD) of 32. The benefits of SALSA
in a read-mostly workload are smaller because read op-
erations do not directly benefit from SALSA and write
amplification due to GC having a smaller impact when writes
are infrequent.

Stable state throughput over time is shown in Fig. 3,
and the average throughput is reported in Table I. SALSA
achieves 2.37× better average throughput than the raw de-
vice for a write-only workload. For a read-mostly workload,
SALSA improves both read and write throughput by 1.43×.
We attribute the worse read throughput of the raw device
to obstruction caused by the drive GC that stalls reads.
Moreover, we have extensively experimented with more than
20 commodity SSDs. Among those, using 20% overprovi-
sioning, SALSA improves throughput on a sustained random
write workload by a factor of 1.5×-3×.

Next, we compare endurance when using SALSA against
using the raw drive. We measure wear via a SMART attribute
that, according to the device manufacturer, increases linearly
with the wear (Program/Erase cycles) of the Flash cells. We
low-level format the drive and fill it up once sequentially.
Subsequently, we perform 10 full device random writes with
4KiB. We record the wear of the device after each full
device write (11 data points including the initial sequential

0

100

200

300

400

500

0 10 20 30 40 50 60

D
ev

ic
e

W
ea

r

Full Device Writes

Raw
SALSA

LLF
LLF

LLF
LLF

LLF

LLF: Low Level Format

Figure 4: SSD wear with and without SALSA.

write). We repeat the experiment 6 times alternating between
runs on the raw device and runs on SALSA. As before,
experiments on the raw device were performed on a partition
equal to the SALSA device size, so a full device write
amounts to the same amount of data in both cases.

Results are shown in Fig. 4. Overall, the same workload
incurs 4.6× less wear to the device when running on SALSA
compared to the raw device. In this experiment, we measured
a write amplification of 2.5 on average for SALSA (which
is very close to the theoretically expected 2.7 for random
writes and chosen overprovision [48]), which implies that
the internal drive write amplification was 11× less compared
to the raw device experiment; SALSA wrote 2.5× the user
data and still induced 4.6× less total device writes compared
to the raw device, suggesting that the total device writes for
the raw device was 2.5 × 4.6 ≈ 11× the user data. Note
that the internal drive write amplification typically includes
metadata (and possibly data) caching on top of GC traffic;
in fact, since the GC traffic should be similar between the
two experiments for random writes, we attribute most of
the extra amplification to this cache traffic. Results were
repeatable over multiple executions of the experiment, and
other commodity SSDs we examined behaved similarly.

2) SMRs: We now turn to SMR drives, comparing the
performance of SALSA against the raw device using 64KiB
uniform random writes with QD1 across the whole device.

We use SALSA with all SMR variants (drive-managed,
host-aware, and host-managed) across multiple vendors.
Here, we present results for a drive-managed SMR, because
we can directly compare against the drive’s TL by applying
the same workload on the raw device.1 A drive-managed
SMR, however, limits SALSA because it does not expose
drive information (e.g., zones) and cannot be directly con-
trolled (e.g., does not allow resetting write pointers). Instead,

1The host-aware SMR drives that we tested were vendor samples, and
therefore might not be representative of the final products. For this reason
we opted to present results for widely-available drive-managed SMRs.

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

0

50

100

150

200

Th
ro

ug
hp

ut
 (M

iB
/s

)

salsa (w)
raw (w)

6000 8000 10000 12000
Time (s)

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (M

iB
/s

)

salsa (w)
raw (w)

Figure 5: 64KiB random writes on a host-managed SMR
with and without SALSA. The raw results are after the
first write on the device, while the SALSA results are after
the whole device was randomly written once. The top plot
shows the 0-7 Ksecs area, while the bottom focuses on the
6-12 Ksecs area.

similarly to SSDs, SALSA writes sequentially to minimize
the drive’s TL interference. We overprovision SALSA by
10%, and low-level format the drive before the experiments.
We select this value with a steady-state random workload in
mind; for other workloads (e.g., read-mostly or sequential)
smaller values might offer a better tradeoff.

The results are shown in Fig. 5. The raw device through-
put starts close to 80MiB/s but drops to 200 KiB/sec
after about 5 minutes, which renders the device effectively
unusable for many applications. We attribute the drop in
performance to the persistent cache of the drive, as identified
by prior work [49], [50]: after the persistent cache is filled
(∼ 1.4GiB of random 64KiB writes [49]), then the drive
starts its cleanup process, which entails read-modify-writes
on MiBs of data.

Contrarily, SALSA’s performance does not degrade that
quickly. Hence, to facilitate an easier comparison Fig. 5
presents SALSA throughput results after a full device
(random) write. We observe three phases in SALSA per-
formance. During the first and second phase, no GC is
performed. Initially, caching on the drive allows an initial

throughput of roughly 160MiB/s, which drops to 100MiB/s
after about 3K seconds. This designates the SALSA per-
formance for bursts up to an amount of data equal to
the difference between the high and low GC watermarks.
In the third phase, GC starts and the throughput of the
SALSA device becomes roughly 5 MiB/s, 25× better than
the throughput of the raw drive.

B. Containerized MySQL on SSDs

In this section, we evaluate the effect of SALSA’s single-
and multi-device optimizations on the performance of a real-
world database. Specifically, we deploy multiple MySQL
Docker containers on commodity SSDs in a single- and a
multi-device (RAID-5) setup, and execute an OLTP work-
load generated by sysbench [51].

We evaluate 5 container storage configurations: three with
1 SSD (raw device, F2FS [10], and SALSA), and two
with 4 SSDs using RAID-5 (Linux MD [52] and SALSA
equivalent). We use the same hardware and setup (format-
ting, partitioning, preconditioning) as in V-A1. For F2FS,
we also allocate the same over-provisioning as the other
deployments: 20% using the -o 20 option when creating
the filesystem with mkfs.f2fs. We only use F2FS in the
single device deployment, since it did not provide a native
RAID-5 equivalent multi-device deployment option. The
only difference across our experiments is the device we
use (a raw device partition, a SALSA device, or an MD
device). In this device we create one (logical) volume per
MySQL instance to store database data. We use the Ubuntu
14.04 image provided by Docker, adding the necessary
packages for our experiment. We deploy four containers
with one multi-threaded MySQL server per container. Each
server uses a 160GiB database image which we place on
the corresponding volume. On each container, we run 4
sysbench threads to maximize IO throughput. We use the
default LSA controller (§III-C) for SALSA.

raw F2FS SALSA
tps avg 95% tps avg 95% tps avg 95%

22.2 180ms 651ms 25.6 157ms 599ms 37.4 107ms 266ms
21.3 188ms 655ms 25.6 156ms 599ms 37.6 106ms 264ms
21.2 188ms 656ms 25.5 157ms 596ms 37.7 106ms 264ms
21.2 188ms 654ms 25.6 157ms 603ms 39.1 102ms 258ms

(a) 1 SSD

Linux MD SALSA
tps avg 95% tps avg 95%
8.1 2.0s 5.3s 287.2 55.7ms 99.5ms
8.1 2.0s 5.3s 290.5 55.1ms 98.4ms
8.3 1.9s 5.2s 286.5 55.9ms 99.9ms
7.8 2.1s 5.6s 291.1 55.0ms 98.2ms

(b) 3+1 SSDs RAID-5: Linux MD and SALSA

Table II: Sysbench results for each MySQL instance:
throughput in transactions per second (tps), average (avg)
and 95th percentile (95%) response times.

Results for one SSD, as reported by each sysbench
instance are shown in Table IIa. Fig. 6a depicts sysbench
throughput over time for each instance. SALSA improves
throughput by 1.68×, and the average latency by 1.69×
compared to raw device, illustrating the benefits of imple-
menting a TL on the host, instead of the device where
resources are limited. Also, SALSA provides an improved
throughput by 1.47× compared to F2FS, at a reduced
tail latency (95% percentile) of 2.45×. We attribute the
improvement against F2FS mainly to two reasons: (i) F2FS
uses a 2MiB segment size which is not optimal for modern
commodity SSDs II-C, compared to segments at the GiB
level for SALSA, and (ii) F2FS updates its metadata in
separate write-logs and at eventually in-place [10] which
further reduce the effective sequential I/O size as received at
the drive TL level; large, uninterrupted sequential overwrites
are essential to achieve the ideal write performance of non-
enterprise grade SSDs [35].

Fig. 6b and Table IIb show results for four SSDs in
a RAID-5 configuration, using Linux MD and SALSA.
SALSA increases throughput by 35.4× and improves the
average response time by 36.8×. These results showcase
the significant benefits of a TL that is multi-device aware.
While SALSA can guarantee full-stripe writes with a small
persistent buffer, in-place update approaches such as Linux
MD cannot, because that would require a buffer with size
comparable to device capacity. Hence, in-place updates in
Linux MD trigger read-modify-write operations that lead to
response times in the order of seconds, rendering this setup
unsuitable for many applications.

We also note that the performance difference between
SALSA for one device and RAID-5 is due to the lower GC
pressure in the latter case, since the RAID-5 configuration
has 3 times the capacity of the single device configuration
while the working set size does not change across the
two tests. Contrarily, the Linux RAID-5 implementation has
lower throughput than the single device, due to the parity
updates and read-modify-write operations, which also slow
down dependent reads.

Finally, the CPU overhead is negligible. In the RAID-
5 configuration, we measured an overhead of less than
6% in normalized CPU utilization (CPU utilization / TPS)
compared to the raw Linux MD configuration.

C. Object store using SMR drives

A host TL enables workload-specific optimizations. We
evaluate the benefits of such an approach by running an
object store on SMR disks, comparing the SALSA dual-
mapping controller (§IV-A) against the raw device.

We use Openstack Swift, a popular open-source
eventually-consistent object store [26]. Swift is written in
Python and includes mutliple services. For our evaluation we
focus on the object server [53], the component that stores,
retrieves, and deletes objects on local devices. Objects are

0 500 1000 1500 2000 2500 3000 3500
time (s)

0

10

20

30

40

50

60

Th
ro

ug
hp

ut
 (t

ps
)

raw-1
raw-2
raw-3
raw-4

F2FS-1
F2FS-2
F2FS-3
F2FS-4

salsa-1
salsa-2
salsa-3
salsa-4

(a) 1 SSD: raw device, F2FS, and SALSA

0 500 1000 1500 2000 2500 3000 3500
time (s)

0

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (t

ps
)

md-1
md-2
md-3
md-4

salsa-1
salsa-2
salsa-3
salsa-4

(b) 4 SSDs: Linux md software-RAID 5 and SALSA RAID-5 equivalent

Figure 6: Throughput of sysbench during execution

PUT UPDATE GET0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
 (M

iB
/s

)

object size: 10.0 MiB
raw
salsa

PUT UPDATE GET0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
 (M

iB
/s

)

object size: 128.0 kiB
raw
salsa

Figure 7: Swift storage server throughput for different op-
erations, comparing the raw device and SALSA.

stored as files on the filesystem, while object metadata are
stored in the file’s extended attributes. For both experiments,
we use an XFS filesystem configured per the Swift docu-
mentation [54] on the same SMR drive as §V-A2. To isolate
storage performance, we wrote a Python program that issues
requests directly to the object server. Swift uses “green
threads”, i.e., collaborative tasks, to enable concurrency. We
do the same, using a 32 green thread pool for having multiple
requests in flight.

We initialize the object store via PUT operations, so
that the total data size is 64GiB. We subsequently update
(UPDATE), and finally retrieve (GET) all the objects. The last
two operations are performed in different random orders. We
clear the filesystem and block caches before starting each
series of operations.

Fig. 7 shows the throughput of the raw drive and SALSA
for 128KiB and 10MiB objects for each different operation.
(These sizes were found to represent small and large object
sizes in the literature [40].) For small objects, using the raw
device leads to low throughput for both PUTs and UPDATEs:
8.8 and 6.7 MiB/s. We attribute the poor performance to
the drive having to write different files, located at different

extents, potentially triggering relocation. SALSA, on the
other hand, achieves higher throughput: 56 MiB/s for PUTs
(6.36×) and 27.5 MiB/s for UPDATEs (4.1×). UPDATEs
exhibit lower performance for both systems since the file that
represents the object needs to be modified. GET performance
is similar for both systems: 10.7 for raw and 11.3 MiB/s
for SALSA. For large objects the behaviour for PUTs and
UPDATEs is similar, but the difference between the raw
device and SALSA is smaller. For PUTs SALSA achieves
63.4 MiB/s, 2× higher than the raw device (30.4 MiB/s); for
UPDATEs the respective numbers are 60.7 MiB/s and 18.1
MiB/s, a 3.35× improvement for SALSA. SALSA results
in better throughput for the GET operation of large objects
at 65.6 MiB/s, while the raw device is at 48.9 MiB/s. We
believe this is because XFS uses multiple extents for large
files. In SALSA, these extents end up being close together
even if they have different logical addresses, thus minimizing
seek time when accessing them.

In addition to throughput, we sample the operation latency
every ten operations and summarize the results in Fig. 8,
using a box plot and a CDF diagram for each operation
type. Because latency has a wide range of values, we use
a logarithmic scale. For small objects, SALSA results in a
lower median latency for both PUT and UPDATE operations:
30.8ms and 36.8ms. Using the raw device leads to much
higher latencies: 109ms for PUT (3.5× higher) and 276ms
for UPDATE (7.5× higher). Both SALSA and raw have a
similar median latency for GET: 9.5ms. For large objects,
SALSA still achieves a significantly lower median latency
that the raw device. The median latency for a PUT on the
raw device is close to 2× higher than SALSA (6.5s versus
3.3s), while for UPDATEs raw is 4.6× higher than SALSA
(16.1s versus 3.5s). The raw device achieves an improved
latency of 84.8ms for GET compared to SALSA that achieves
111.1ms, but as shown in Fig. 8, the raw device has a wider
spread.

The relation between latency and throughput is different

raw salsa10-3

10-2

10-1

100

101

102

La
te

nc
y

(s
)

10-3 10-2 10-1 100 101 102

Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0 CDF

raw
salsa

(a) PUT/128KiB

raw salsa10-3

10-2

10-1

100

101

102

La
te

nc
y

(s
)

10-3 10-2 10-1 100 101 102

Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0 CDF

raw
salsa

(b) UPDATE/128KiB

raw salsa10-3

10-2

10-1

100

101

102

La
te

nc
y

(s
)

10-3 10-2 10-1 100 101 102

Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0 CDF

raw
salsa

(c) GET/128KiB

raw salsa10-2

10-1

100

101

102

103

La
te

nc
y

(s
)

10-2 10-1 100 101 102 103

Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0 CDF

raw
salsa

(d) PUT/10MiB

raw salsa10-2

10-1

100

101

102

103

La
te

nc
y

(s
)

10-2 10-1 100 101 102 103

Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0 CDF

raw
salsa

(e) UPDATE/10MiB

raw salsa10-2

10-1

100

101

102

103

La
te

nc
y

(s
)

10-2 10-1 100 101 102 103

Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0 CDF

raw
salsa

(f) GET/10MiB

Figure 8: Swift storage server latency for different operations, comparing the raw device and SALSA. The box is placed in
the first and third quartiles, the line inside the box is the median, and the whiskers are at 1.5 IQR.

for GETs and write operations (PUTs and UPDATEs). In
small objects, for example, GETs have lower throughput
even though they have lower latency. This is because write
operations allow higher concurrency. Swift performs writes
by placing the data into a temporary file, updating metadata,
calling fsync, and finally moving the file in its proper
location using rename. The final steps are oflloaded to
another thread and execution continues with the next request.
Only after a number of subsequent requests are serviced, the
initial requests will be allowed to continue execution and
complete, even if the rename call was completed before that.
This approach enables high-throughput but can significantly
hurt latency.

D. Multiple TLs for mixed workloads

SALSA enables different policies over a storage pool
by decoupling storage policy and space management. Each
policy is implemented as a different controller (TL) that
exposes a different device to the user. In this section,
we evaluate the benefits of this approach by deploying
two different controllers on an SSD. Specifically, we run
a containerized MySQL database on an LSA controller
(§III-C) with an 8KiB page size to match the database page
size, and a Swift object storage system on a dual-mapping
controller (§IV-A) on the same SSD. We compare this
approach against two others that use traditional partitions
(one for each application): the raw device, and the LSA
controller (configured with the default 4KiB page size). We
run the mixed workload comprising sysbench OLTP and
a object store PUT workload with 128KiB objects for 30

minutes and evaluate the different configurations based on
memory footprint and application performance. We further
compare the observed relocation traffic for SALSA under
the two configurations.

Table III summarizes the results. For F2FS, we include
results with 1MiB objects since under 128KiB objects its
performance was low (17.46 sysbench tps, and 6.7MiB/s
object write throughput), due to stressing the file creation
scalability of the filesystem at hundreds of thousands of
files [55], which was not the aim of this evaluation. Both
SALSA configurations maintain a performance improve-
ment similar to the single-SSD experiments presented in
Sections V-A1 and V-B, both against the raw device and
against F2FS. By using a separate controller tailored to each
application, the dual controller setup realizes slightly higher
performance than the default single LSA controller setup
with 4KiB page size. More importantly, it does so at a
significantly lower overhead, both in terms of DRAM (60%)
and storage capacity (71%).

Moreover, the dual controller configuration provides seg-
regation of the different applications’ data, as each con-
troller appends data to separate segments (by using separate
allocators Fig. 2). This data segregation allows the dual-
controller configuration to perfectly separate the data of the
object store from the data of the MySQL database. The result
is a relocation traffic that is reduced by 28% compared to
the single-controller configuration. In this particular case,
this reduction does not translate to significant bottom line
performance improvement, because relocations comprise a

raw F2FS salsa-single salsa-dual
sysbench (tps) 20.3 20.4 34.05 35.90
Swift PUT (MiB/s) 25.5 34.28 37.29 38.19
DRAM overhead (GiB) NA 0.85 1.66 0.68
MD overhead (GiB) NA 2.11 1.82 0.53
Relocations (MiB/s) NA NA 2.48 1.78

Table III: Mixed workload results over raw device (raw),
over the F2FS filesystem (F2FS), SALSA with 1 controller
(salsa-single) and SALSA with 2 controllers (salsa-dual):
sysbench throughput in transactions per second (tps), Swift
object server PUT throughput, DRAM overhead, Metadata
(MD) capacity overhead, and relocation traffic.

small component of the total write workload (7% for the
single controller setup) which is expected considering that
most of the write workload is sequential (object PUTs).
Furthermore, the SSD we use does not offer control over the
write streams to the host. Such control, e.g., in the form of
the Write Streams Directive introduced in the latest version
of the NVMe interface [37], would substantially increase the
benefit from stream separation at the host TL level.

E. Video server with SMRs and SSDs

SALSA also supports controllers that combine different
storage media. Here, we evaluate the benefits of running
a server for user-generated videos on a SALSA hybrid
controller that combines SSD and SMR drives. We compare
three configurations: using the raw SMR device, using the
SMR device over SALSA, and using a SALSA hybrid
controller that employs both a Flash drive and an SMR drive
as described in §IV-B.

We use an XFS filesystem on the device, and we generate
the workload using Filebench [56]. Filebench includes a
video-server macro-workload that splits files into two sets:
an active and a passive set. Active files are read from 48
threads, and a file from the passive set is replaced every
10 seconds. User-generated videos are typically short, with
an average size close to 10MiB [46]. Furthermore, videos
are virtually never deleted, and most views happen on a
relatively small subset of the stored videos. Subsequently,
we modify the workload to use smaller files (10MiB), create
new files instead of replacing files from the passive set every
1 second, and use direct IO for reads to avoid cache effects.

We run the benchmark for 20 min and show the through-
put as reported by Filebench on Table IV. The write through-
put remains at 10 MiB/s for all cases since we are writing
a 10MiB file every second. Using SALSA over the SMR
drive delivers a higher read throughput (6.2 MiB/s versus
4.8 MiB/s) because the periodical writes are less obstructive
to the reads. The hybrid controller achieves a much higher
read throughput of 118.5 MiB/s by using an SSD to hold
the “hot” files.

Fig. 9 gives more insight on the operation of the hybrid
controller by showing the read and write throughput of the

throughput R (MiB/s) W (MiB/s)
raw 4.8 10.1
salsa 6.2 10.1
salsa-hybrid 118.5 10.0

Table IV: Read (R) and write (W) throughput of video
server macro-benchmark workload.

SSD and SMR drives as reported by iostat for the duration of
the benchmark (we use a logarithmic scale on the y axis for
clarity). Initially, all files are on the SMR drive. As the active
videos are accessed by the reader threads, data migrates
to the SSD and we observe SSD writes. After about 200
seconds, we reach stable state where all active videos are in
the SSD. At this point, writes are served by the SMR and
reads by the SSD.

0 200 400 600 800 1000 1200
Time (s)

10-2

10-1

100

101

102

Th
ro

ug
hp

ut
 (M

iB
/s

)

smr (w) smr (r) ssd (w) ssd (r)

Figure 9: Read and write throughput of the SSD and SMR
drive for the video server macro-benchmark when using the
SALSA hybrid controller.

VI. RELATED WORK

The log-structured filesystem design was proposed in-
dependently of SSDs, as a way to increase write band-
width [24]. Subsequent research work has proposed Flash-
tailored log-structured filesystems to increase performance
either on top of an FTL [9], [10], [57] or by accessing
Flash memory directly [8], [58]. Menon introduces log-
structured arrays implemented in the storage controller, as
an alternative to RAID [25]. The same approach is followed
in Purity for an enterprise all-Flash array [59]. All the above
systems adopt append-only writes as a way to minimize
random writes on Flash and increase performance. In our
work, we follow a similar approach, but we tailor it to
low-cost commodity devices, while also supporting multiple
storage types.

A number of works have identified the limitations of
SSD drive TLs, proposing offloading functionality to the
host. Jeong et al. [60] propose caching the address map-
ping table in host memory, illustrating the problems of

limited drive controller resources. The Virtual Flash Storage
Layer (VFSL) [8], [22], [61] is an attempt to place the
TL on the host, exporting a large, virtual block address
space that enables building Flash-friendly applications [16].
LSDM [62] is a host log-structured TL that targets low-cost
SSDs. Recently, Linux introduced a TL for zoned drives [63]
that exclusively targets zoned storage types (e.g., HA or
HM SMR). While our motivation is common with these
host TLs, SALSA is fundamentally different from in two
ways. First, SALSA is designed to support multiple storage
types and devices, using a common codebase to operate
on them. Second, the aforementioned works implement a
single TL layer which all applications use. In SALSA,
contrarily, we concede that no single TL implementation is
best for all cases. Instead, SALSA allows for multiple TL
implementation instances (resulting in multiple volumes, for
example) on top of a common SCM layer.

In a similar spirit, recent attempts expose the internal
storage complexities (e.g., Flash channels [19], [20], or
GC controls [64]) to enable host software to make more
intelligent decisions and reduce controller costs. We view
these efforts as orthogonal to ours: SALSA can operate on
and benefit from these drives, but does not depend on them.
Similarly, we view attempts to redefine the interface between
applications and idiosyncratic storage [21], [23], [58], [65],
[66] also as orthogonal. Currently, SALSA controllers offer
a traditional interface because we target unmodified applica-
tions. Improved interfaces can be implemented (and co-exist)
by individual controllers.

A hybrid system with Flash and disk is presented in [67]
for database storage, where a cost-based model is used to
decide which pages to store on Flash and which pages
to store on disk. SALSA is different in that it focuses
on actively transforming the workload to achieve higher
performance (and, thus, lower cost) from the devices using a
log-structured approach. A hybrid approach that we have not
investigated is realized by Griffin [68] that uses HDDs as a
write-cache for SSDs. Another hybrid approach is taken by
Gecko [69], where a log-structured array on top of HDDs in
a single TL layer is implemented, augmented by RAM- and
SSD-based caching. SALSA, on the other hand, operates on
SSDs and SMRs, does not rely on data caching, and supports
multiple TL implementation instances.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented SALSA, a log-structured host
TL that that can be used transparently from applications
and offers significant performance and durability benefits
for SSDs and SMR drives.

While we focus on SSDs and SMRs due to their idiosyn-
crasies in this paper, we believe that SALSA is also useful
for other types of storage. On one hand, a log-structured TL
has significant benefits even in non-idiosyncratic storage like
DRAM [70] or non-volatile memory [71], [72]. On the other

hand, coupled with proper policies, a host TL like SALSA
can enable smart data movement between different storage
types. We plan to expand on these ideas in future work.
Moreover, in ongoing work we explore buidling SALSA-
native applications that execute SALSA as a library in user-
space. Among other benefits, this allows avoiding kernel
overheads by utilizing user-space I/O drivers such as the
Storage Performance Development Kit (SPDK) [73].

Notes: IBM is a trademark of International Business Ma-
chines Corporation, registered in many jurisdictions world-
wide. Linux is a registered trademark of Linus Torvalds in
the United States, other countries, or both. Other products
and service names might be trademarks of IBM or other
companies.

REFERENCES

[1] R. Wood, M. Williams, A. Kavcic, and J. Miles, “The
feasibility of magnetic recording at 10 terabits per square
inch on conventional media,” Magnetics, IEEE Transactions
on, vol. 45, no. 2, pp. 917–923, Feb 2009.

[2] M. Nanavati, M. Schwarzkopf, J. Wires, and A. Warfield,
“Non-volatile storage,” Commun. ACM, vol. 59, no. 1, pp.
56–63, Dec. 2015. [Online]. Available: http://doi.acm.org/10.
1145/2814342

[3] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and
K. Li, “RIPQ: Advanced photo caching on flash for
facebook,” in 13th USENIX Conference on File and
Storage Technologies (FAST 15), Feb. 2015, pp. 373–
386. [Online]. Available: https://www.usenix.org/conference/
fast15/technical-sessions/presentation/tang

[4] E. Brewer, L. Ying, L. Greenfield, R. Cypher, and T. T’so,
“Disks for data centers,” Google, Tech. Rep., 2016.

[5] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and
H.-J. Song, “A survey of flash translation layer,” J. Syst.
Archit., vol. 55, no. 5-6, pp. 332–343, May 2009. [Online].
Available: http://dx.doi.org/10.1016/j.sysarc.2009.03.005

[6] D. Ma, J. Feng, and G. Li, “A survey of address translation
technologies for flash memories,” ACM Computing Surveys
(CSUR), vol. 46, no. 3, p. 36, 2014.

[7] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A flash
translation layer employing demand-based selective caching
of page-level address mappings,” in Proceedings of the
14th International Conference on Architectural Support
for Programming Languages and Operating Systems, ser.
ASPLOS XIV, 2009, pp. 229–240. [Online]. Available:
http://doi.acm.org/10.1145/1508244.1508271

[8] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn, “DFS:
A file system for virtualized flash storage,” Trans. Storage,
vol. 6, no. 3, pp. 14:1–14:25, Sep. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1837915.1837922

http://doi.acm.org/10.1145/2814342
http://doi.acm.org/10.1145/2814342
https://www.usenix.org/conference/fast15/technical-sessions/presentation/tang
https://www.usenix.org/conference/fast15/technical-sessions/presentation/tang
http://dx.doi.org/10.1016/j.sysarc.2009.03.005
http://doi.acm.org/10.1145/1508244.1508271
http://doi.acm.org/10.1145/1837915.1837922

[9] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom,
“Sfs: Random write considered harmful in solid state
drives,” in Proceedings of the 10th USENIX Conference
on File and Storage Technologies, ser. FAST’12, 2012, pp.
12–12. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2208461.2208473

[10] C. Lee, D. Sim, J. Hwang, and S. Cho, “F2FS: A new
file system for flash storage,” in 13th USENIX Conference
on File and Storage Technologies (FAST 15), Feb. 2015,
pp. 273–286. [Online]. Available: https://www.usenix.org/
conference/fast15/technical-sessions/presentation/lee

[11] S.-y. Park, D. Jung, J.-u. Kang, J.-s. Kim, and J. Lee,
“CFLRU: A replacement algorithm for flash memory,”
in Proceedings of the 2006 International Conference
on Compilers, Architecture and Synthesis for Embedded
Systems, ser. CASES ’06, 2006, pp. 234–241. [Online].
Available: http://doi.acm.org/10.1145/1176760.1176789

[12] H. Kim and S. Ahn, “BPLRU: A buffer management
scheme for improving random writes in flash storage,”
in Proceedings of the 6th USENIX Conference on File
and Storage Technologies, ser. FAST’08, 2008, pp. 16:1–
16:14. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1364813.1364829

[13] M. Saxena and M. M. Swift, “FlashVM: Virtual memory
management on flash,” in Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference, ser.
USENIXATC’10, 2010, pp. 14–14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855840.1855854

[14] B. Debnath, S. Sengupta, and J. Li, “Flashstore: High
throughput persistent key-value store,” Proc. VLDB Endow.,
vol. 3, no. 1-2, pp. 1414–1425, Sep. 2010. [Online].
Available: http://dx.doi.org/10.14778/1920841.1921015

[15] ——, “Skimpystash: Ram space skimpy key-value store
on flash-based storage,” in Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data,
ser. SIGMOD ’11, 2011, pp. 25–36. [Online]. Available:
http://doi.acm.org/10.1145/1989323.1989327

[16] L. Marmol, S. Sundararaman, N. Talagala, R. Rangaswami,
S. Devendrappa, B. Ramsundar, and S. Ganesan, “NVMKV:
A scalable and lightweight flash aware key-value store,”
in 6th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 14), Jun. 2014. [Online].
Available: https://www.usenix.org/conference/hotstorage14/
workshop-program/presentation/marmol

[17] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and
J. Cong, “An efficient design and implementation of lsm-tree
based key-value store on open-channel ssd,” in Proceedings
of the Ninth European Conference on Computer Systems,
ser. EuroSys ’14, 2014, pp. 16:1–16:14. [Online]. Available:
http://doi.acm.org/10.1145/2592798.2592804

[18] R. Pitchumani, J. Hughes, and E. L. Miller, “SMRDB:
key-value data store for shingled magnetic recording disks,”
in Proceedings of the 8th ACM International Systems
and Storage Conference, ser. SYSTOR ’15, 2015, pp.
18:1–18:11. [Online]. Available: http://doi.acm.org/10.1145/
2757667.2757680

[19] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and
Y. Wang, “SDF: Software-defined flash for web-scale
internet storage systems,” in Proceedings of the 19th
International Conference on Architectural Support for
Programming Languages and Operating Systems, ser.
ASPLOS ’14, 2014, pp. 471–484. [Online]. Available:
http://doi.acm.org/10.1145/2541940.2541959

[20] M. Bjørling, J. Gonzalez, and P. Bonnet, “Lightnvm: The
linux open-channel SSD subsystem,” in 15th USENIX
Conference on File and Storage Technologies (FAST 17).
Santa Clara, CA: USENIX Association, 2017, pp. 359–
374. [Online]. Available: https://www.usenix.org/conference/
fast17/technical-sessions/presentation/bjorling

[21] S. Lee, M. Liu, S. Jun, S. Xu, J. Kim, and Arvind,
“Application-managed flash,” in 14th USENIX Conference
on File and Storage Technologies (FAST 16), 2016, pp.
339–353. [Online]. Available: http://usenix.org/conference/
fast16/technical-sessions/presentation/lee

[22] Gary Orenstein, “Optimizing I/O operations via the
flash translation layer,” Flash Memory Summit, 2011,
http://www.flashmemorysummit.com/English/Collaterals/
Proceedings/2011/20110809 F1B Orenstein.pdf.

[23] Y. Lu, J. Shu, and W. Zheng, “Extending the lifetime
of flash-based storage through reducing write amplification
from file systems,” in 11th USENIX Conference on File
and Storage Technologies (FAST 13), 2013, pp. 257–
270. [Online]. Available: https://www.usenix.org/conference/
fast13/technical-sessions/presentation/lu youyou

[24] M. Rosenblum and J. K. Ousterhout, “The design and imple-
mentation of a log-structured file system,” ACM Transactions
on Computer Systems (TOCS), vol. 10, no. 1, pp. 26–52,
1992.

[25] J. Menon, “A performance comparison of raid-5 and log-
structured arrays,” in High Performance Distributed Com-
puting, 1995., Proceedings of the Fourth IEEE International
Symposium on, 1995, pp. 167–178.

[26] “OpenStack Swift,” http://swift.openstack.org/.

[27] B. Schroeder, R. Lagisetty, and A. Merchant, “Flash reliability
in production: The expected and the unexpected,” in 14th
USENIX Conference on File and Storage Technologies
(FAST 16). Santa Clara, CA: USENIX Association, 2016,
pp. 67–80. [Online]. Available: http://usenix.org/conference/
fast16/technical-sessions/presentation/schroeder

[28] R. L. Villars and E. Burgener, “IDC: Building data centers
for todays data driven economy: The role of flash,”
https://www.sandisk.com/business/datacenter/resources/
white-papers/flash-in-the-data-center-idc, July 2014.

[29] S. Knipple, “Leveraging the latest flash in the
data center,” Flash Memory Summit, 2017,
https://www.flashmemorysummit.com/English/Collaterals/
Proceedings/2017/20170809 FG21 Knipple.pdf.

[30] D. G. Andersen and S. Swanson, “Rethinking flash in the
data center,” IEEE Micro, vol. 30, no. 4, pp. 52–54, Jul. 2010.
[Online]. Available: http://dx.doi.org/10.1109/MM.2010.71

http://dl.acm.org/citation.cfm?id=2208461.2208473
http://dl.acm.org/citation.cfm?id=2208461.2208473
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
http://doi.acm.org/10.1145/1176760.1176789
http://dl.acm.org/citation.cfm?id=1364813.1364829
http://dl.acm.org/citation.cfm?id=1364813.1364829
http://dl.acm.org/citation.cfm?id=1855840.1855854
http://dx.doi.org/10.14778/1920841.1921015
http://doi.acm.org/10.1145/1989323.1989327
https://www.usenix.org/conference/hotstorage14/workshop-program/presentation/marmol
https://www.usenix.org/conference/hotstorage14/workshop-program/presentation/marmol
http://doi.acm.org/10.1145/2592798.2592804
http://doi.acm.org/10.1145/2757667.2757680
http://doi.acm.org/10.1145/2757667.2757680
http://doi.acm.org/10.1145/2541940.2541959
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
http://usenix.org/conference/fast16/technical-sessions/presentation/lee
http://usenix.org/conference/fast16/technical-sessions/presentation/lee
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2011/20110809_F1B_Orenstein.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2011/20110809_F1B_Orenstein.pdf
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu_youyou
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu_youyou
http://swift.openstack.org/
http://usenix.org/conference/fast16/technical-sessions/presentation/schroeder
http://usenix.org/conference/fast16/technical-sessions/presentation/schroeder
https://www.sandisk.com/business/datacenter/resources/white-papers/flash-in-the-data-center-idc
https://www.sandisk.com/business/datacenter/resources/white-papers/flash-in-the-data-center-idc
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_FG21_Knipple.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_FG21_Knipple.pdf
http://dx.doi.org/10.1109/MM.2010.71

[31] T. Feldman and G. Gibson, “Shingled magnetic record-
ing areal density increase requires new data management,”
USENIX; login: Magazine, vol. 38, no. 3, 2013.

[32] Archive HDD: v2 SATA Product Manual: ST8000AS0022,
ST6000AS0022, Seagate, Nov. 2015, revision F.

[33] HGST Ultrastar Archive Ha10, Hard disk drive specifications,
HGST, Jun. 2015, revision 1.0.

[34] Information technology – Zoned Block Commands (ZBC),
INCITS T10 Technical Committee, Nov. 2014, working Draft,
Revision 3. Available from http://www.t10.org/drafts.htm.

[35] L. Caulfield, M. Xing, Z. Tan, and R. Alexander, “An-
dromeda: Building the next-generation high-density storage
interface for successful adoption,” http://nvmw.eng.ucsd.edu/
2017/assets/slides/51/, 2017.

[36] OCZ, “Saber 1000 HMS series: Performance test report using
Aerospike db and the YCSB benchmark tool.”

[37] “Non-Volatile Memory Express (NVMe) 1.3,” http://
nvmexpress.org/.

[38] L.-P. Chang, T.-W. Kuo, and S.-W. Lo, “Real-time garbage
collection for flash-memory storage systems of real-time em-
bedded systems,” ACM Trans. Embed. Comput. Syst., vol. 3,
no. 4, pp. 837–863, Nov. 2004.

[39] A. Trivedi, N. Ioannou, B. Metzler, P. Stuedi, J. Pfefferle,
I. Koltsidas, K. Kourtis, and T. R. Gross, “Flashnet:
Flash/network stack co-design,” in Proceedings of the 10th
ACM International Systems and Storage Conference, ser.
SYSTOR ’17. New York, NY, USA: ACM, 2017, pp.
15:1–15:14. [Online]. Available: http://doi.acm.org/10.1145/
3078468.3078477

[40] Q. Zheng, H. Chen, Y. Wang, J. Zhang, and J. Duan, “Cos-
bench: Cloud object storage benchmark,” in Proceedings of
the 4th ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’13, 2013, pp. 199–210. [Online].
Available: http://doi.acm.org/10.1145/2479871.2479900

[41] Seagate Corporation, OneStor AP-2584 Datasheet. [Online].
Available: http://www.seagate.com/www-content/product-
content/xyratex-branded/embedded-storage-platforms/en-
us/one-stor-ap2584-datasheet.pdf

[42] R. Mack, “Building timeline: Scaling up to hold your life
story,” https://code.facebook.com/posts/371094539682814/
building-timeline-scaling-up-to-hold-your-life-story/.

[43] “Seagate: Solid state hybrid technology,” http://www.seagate.
com/solutions/solid-state-hybrid/products/.

[44] Western Digital Technologies, WD Black2 Dual Drive User
Manual, Nov 2013.

[45] M. Saxena, M. M. Swift, and Y. Zhang, “FlashTier:
a lightweight, consistent and durable storage cache,”
in Proceedings of the 7th ACM European Conference
on Computer Systems, ser. EuroSys ’12, 2012, pp. 267–
280. [Online]. Available: http://doi.acm.org/10.1145/2168836.
2168863

[46] X. Cheng, J. Liu, and C. Dale, “Understanding the
characteristics of internet short video sharing: A youtube-
based measurement study,” Trans. Multi., vol. 15, no. 5,
pp. 1184–1194, Aug. 2013. [Online]. Available: http:
//dx.doi.org/10.1109/TMM.2013.2265531

[47] S. Godard, iostat(1) Linux User’s Manual, July 2013.

[48] R. Stoica and A. Ailamaki, “Improving flash write
performance by using update frequency,” Proc. VLDB
Endow., vol. 6, no. 9, pp. 733–744, Jul. 2013. [Online].
Available: http://dx.doi.org/10.14778/2536360.2536372

[49] A. Aghayev and P. Desnoyers, “Skylight—a window on
shingled disk operation,” in 13th USENIX Conference on
File and Storage Technologies (FAST 15), Feb. 2015,
pp. 135–149. [Online]. Available: https://www.usenix.org/
conference/fast15/technical-sessions/presentation/aghayev

[50] A. Aghayev, T. Ts’o, G. Gibson, and P. Desnoyers,
“Evolving ext4 for shingled disks,” in 15th USENIX
Conference on File and Storage Technologies (FAST 17).
Santa Clara, CA: USENIX Association, 2017, pp. 105–
120. [Online]. Available: https://www.usenix.org/conference/
fast17/technical-sessions/presentation/aghayev

[51] A. Kopytov, “SysBench: a system performance bench-
mark 0.5,” https://code.launchpad.net/∼sysbench-developers/
sysbench/0.5.

[52] md: Multiple Device driver aka Linux Software RAID.

[53] “Swift architectural overview,” http://docs.openstack.org/
developer/swift/overview architecture.html.

[54] “Swift software configuration procedures,” http://docs.
openstack.org/developer/swift/ops runbook/procedures.html.

[55] C. Min, S. Kashyap, S. Maass, and T. Kim,
“Understanding manycore scalability of file systems,”
in 2016 USENIX Annual Technical Conference (USENIX
ATC 16). Denver, CO: USENIX Association, 2016, pp. 71–
85. [Online]. Available: https://www.usenix.org/conference/
atc16/technical-sessions/presentation/min

[56] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A flexible
framework for file system benchmarking,” ;login, vol. 41,
no. 1, 2016.

[57] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara,
and S. Moriai, “The linux implementation of a log-
structured file system,” SIGOPS Oper. Syst. Rev., vol. 40,
no. 3, pp. 102–107, Jul. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1151374.1151375

[58] J. Zhang, J. Shu, and Y. Lu, “Parafs: A log-structured
file system to exploit the internal parallelism of flash
devices,” in Proceedings of the 2016 USENIX Conference
on Usenix Annual Technical Conference, ser. USENIX
ATC ’16, 2016, pp. 87–100. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=3026959.3026968

http://www.t10.org/drafts.htm
http://nvmw.eng.ucsd.edu/2017/assets/slides/51/
http://nvmw.eng.ucsd.edu/2017/assets/slides/51/
http://nvmexpress.org/
http://nvmexpress.org/
http://doi.acm.org/10.1145/3078468.3078477
http://doi.acm.org/10.1145/3078468.3078477
http://doi.acm.org/10.1145/2479871.2479900
http://www.seagate.com/www-content/product-content/xyratex-branded/embedded-storage-platforms/en-us/one-stor-ap2584-datasheet.pdf
http://www.seagate.com/www-content/product-content/xyratex-branded/embedded-storage-platforms/en-us/one-stor-ap2584-datasheet.pdf
http://www.seagate.com/www-content/product-content/xyratex-branded/embedded-storage-platforms/en-us/one-stor-ap2584-datasheet.pdf
https://code.facebook.com/posts/371094539682814/building-timeline-scaling-up-to-hold-your-life-story/
https://code.facebook.com/posts/371094539682814/building-timeline-scaling-up-to-hold-your-life-story/
http://www.seagate.com/solutions/solid-state-hybrid/products/
http://www.seagate.com/solutions/solid-state-hybrid/products/
http://doi.acm.org/10.1145/2168836.2168863
http://doi.acm.org/10.1145/2168836.2168863
http://dx.doi.org/10.1109/TMM.2013.2265531
http://dx.doi.org/10.1109/TMM.2013.2265531
http://dx.doi.org/10.14778/2536360.2536372
https://www.usenix.org/conference/fast15/technical-sessions/presentation/aghayev
https://www.usenix.org/conference/fast15/technical-sessions/presentation/aghayev
https://www.usenix.org/conference/fast17/technical-sessions/presentation/aghayev
https://www.usenix.org/conference/fast17/technical-sessions/presentation/aghayev
https://code.launchpad.net/~sysbench-developers/sysbench/0.5
https://code.launchpad.net/~sysbench-developers/sysbench/0.5
http://docs.openstack.org/developer/swift/overview_architecture.html
http://docs.openstack.org/developer/swift/overview_architecture.html
http://docs.openstack.org/developer/swift/ops_runbook/procedures.html
http://docs.openstack.org/developer/swift/ops_runbook/procedures.html
https://www.usenix.org/conference/atc16/technical-sessions/presentation/min
https://www.usenix.org/conference/atc16/technical-sessions/presentation/min
http://doi.acm.org/10.1145/1151374.1151375
http://dl.acm.org/citation.cfm?id=3026959.3026968
http://dl.acm.org/citation.cfm?id=3026959.3026968

[59] J. Colgrove, J. D. Davis, J. Hayes, E. L. Miller, C. Sandvig,
R. Sears, A. Tamches, N. Vachharajani, and F. Wang,
“Purity: Building fast, highly-available enterprise flash
storage from commodity components,” in Proceedings of
the 2015 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’15. New York, NY,
USA: ACM, 2015, pp. 1683–1694. [Online]. Available:
http://doi.acm.org/10.1145/2723372.2742798

[60] W. Jeong, H. Cho, Y. Lee, J. Lee, S. Yoon, J. Hwang,
and D. Lee, “Improving flash storage performance by
caching address mapping table in host memory,” in 9th
USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 17). Santa Clara, CA: USENIX
Association, 2017. [Online]. Available: https://www.usenix.
org/conference/hotstorage17/program/presentation/jeong

[61] A. Batwara, “Leveraging flash translation layers for
application acceleration,” Flash Memory Summit, 2012,
http://www.flashmemorysummit.com/English/Collaterals/
Proceedings/2012/20120821 TB11 Batwara.pdf.

[62] A. Zuck, O. Kishon, and S. Toledo, “LSDM: improving
the performance of mobile storage with a log-structured
address remapping device driver,” in Proceedings of the
2014 Eighth International Conference on Next Generation
Mobile Apps, Services and Technologies, ser. NGMAST
’14. Washington, DC, USA: IEEE Computer Society, 2014,
pp. 221–228. [Online]. Available: http://dx.doi.org/10.1109/
NGMAST.2014.9

[63] “dm-zoned: Zoned block device support,” https://www.kernel.
org/doc/Documentation/device-mapper/dm-zoned.txt.

[64] “OCZ announces first SATA host managed SSD: Saber
1000 HMS,” http://www.anandtech.com/show/9720/ocz-
announces-first-sata-host-managed-ssd-saber-1000-hms.

[65] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K.
Panda, “Beyond block I/O: Rethinking traditional storage
primitives,” in 2011 IEEE 17th International Symposium on
High Performance Computer Architecture, Feb 2011, pp. 301–
311.

[66] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “De-indirection for flash-based
ssds with nameless writes,” in Proceedings of the 10th
USENIX Conference on File and Storage Technologies,
ser. FAST’12, 2012, pp. 1–1. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2208461.2208462

[67] I. Koltsidas and S. D. Viglas, “Flashing up the storage
layer,” Proc. VLDB Endow., vol. 1, no. 1, pp. 514–525,
Aug. 2008. [Online]. Available: http://dx.doi.org/10.14778/
1453856.1453913

[68] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and
T. Wobber, “Extending ssd lifetimes with disk-based write
caches,” in 8th USENIX Conference on File and Storage
Technologies, ser. FAST’10, 2010, pp. 8–8. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=1855511.1855519

[69] J. Y. Shin, M. Balakrishnan, T. Marian, and H. Weatherspoon,
“Gecko: Contention-oblivious disk arrays for cloud
storage,” in Presented as part of the 11th USENIX
Conference on File and Storage Technologies (FAST
13). San Jose, CA: USENIX, 2013, pp. 285–
297. [Online]. Available: https://www.usenix.org/conference/
fast13/technical-sessions/presentation/shin

[70] S. M. Rumble, A. Kejriwal, and J. Ousterhout, “Log-
structured memory for DRAM-based storage,” in Proceedings
of the 12th USENIX Conference on File and Storage
Technologies (FAST 14). Santa Clara, CA: USENIX,
2014, pp. 1–16. [Online]. Available: https://www.usenix.org/
conference/fast14/technical-sessions/presentation/rumble

[71] “Btt - block translation table,” https://www.kernel.org/doc/
Documentation/nvdimm/btt.txt.

[72] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne:
Lightweight persistent memory,” in Proceedings of the
Sixteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser.
ASPLOS XVI, 2011, pp. 91–104. [Online]. Available:
http://doi.acm.org/10.1145/1950365.1950379

[73] “Storage performance development kit,” http://www.spdk.io/.

http://doi.acm.org/10.1145/2723372.2742798
https://www.usenix.org/conference/hotstorage17/program/presentation/jeong
https://www.usenix.org/conference/hotstorage17/program/presentation/jeong
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2012/20120821_TB11_Batwara.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2012/20120821_TB11_Batwara.pdf
http://dx.doi.org/10.1109/NGMAST.2014.9
http://dx.doi.org/10.1109/NGMAST.2014.9
https://www.kernel.org/doc/Documentation/device-mapper/dm-zoned.txt
https://www.kernel.org/doc/Documentation/device-mapper/dm-zoned.txt
http://www.anandtech.com/show/9720/ocz-announces-first-sata-host-managed-ssd-saber-1000-hms
http://www.anandtech.com/show/9720/ocz-announces-first-sata-host-managed-ssd-saber-1000-hms
http://dl.acm.org/citation.cfm?id=2208461.2208462
http://dl.acm.org/citation.cfm?id=2208461.2208462
http://dx.doi.org/10.14778/1453856.1453913
http://dx.doi.org/10.14778/1453856.1453913
http://dl.acm.org/citation.cfm?id=1855511.1855519
https://www.usenix.org/conference/fast13/technical-sessions/presentation/shin
https://www.usenix.org/conference/fast13/technical-sessions/presentation/shin
https://www.usenix.org/conference/fast14/technical-sessions/presentation/rumble
https://www.usenix.org/conference/fast14/technical-sessions/presentation/rumble
https://www.kernel.org/doc/Documentation/nvdimm/btt.txt
https://www.kernel.org/doc/Documentation/nvdimm/btt.txt
http://doi.acm.org/10.1145/1950365.1950379
http://www.spdk.io/

	Introduction
	Background and Motivation
	Flash-based SSDs
	SMR disks
	Limitations of drive TLs
	Why a host TL?

	SALSA design
	Storage Capacity Manager
	Garbage Collection (GC)
	LSA controller
	Persisting metadata
	Implementation notes

	Adapting to application workloads
	Dual mapping controller
	Hybrid controller

	Evaluation
	Microbenchmarks
	SSDs
	SMRs

	Containerized MySQL on SSDs
	Object store using SMR drives
	Multiple TLs for mixed workloads
	Video server with SMRs and SSDs

	Related work
	Conclusion and future work
	References

