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Abstract—Large classes of applications fail to scale well in
CMPs due to contention in the memory subsystem. Assigning
full core capacity to such applications is a clear resource waste.
To support efficient and power-aware resource allocation policies,
we need a prediction mechanism to provide information about
the potential scalability of an application. In this paper we
take an initial step towards building a scalability predictor,
based on the utilization of information collected both during
compile and runtime. Our approach is applied separately to each
parallel-for region in the program and calculates an on-chip
to off-chip activity ratio Sr , which then is associated to the scal-
ability of the region (maximum speedup) with linear regression.
Experimental results on two architectures using the Polybench
suite demonstrate that our prediction model exhibits a good
accuracy in predicting the scalability of various parallel-for
regions.

I. INTRODUCTION

Multithreaded applications can execute on multiple cores,
albeit they do not necessarily scale perfectly for a variety
of reasons: synchronization overheads, hardware contention,
OS scalability problems, load imbalance. Memory contention,
in particular, has been shown to be a major hindrance to
scalability for parallel applications [5], [6], [11], [22], [33].

Limited scalability introduces a challenging problem: de-
termining the maximum parallel speedup an application can
achieve to enable for efficient utilization of cores. For example,
many applications exhibit diminishing returns in performance
after using a portion of the cores of the system, at which
point the rest of the cores should be suspended to save
power or used to execute other applications. Solving the core
allocation problem, however, requires a mechanism to predict
the scalability of a parallel application — i.e. its ability to
utilize cores. Adequately accurate solutions could substantially
facilitate the task of contention-aware schedulers [5], [7], [25],
[28], or automatic parallelization frameworks like PLUTO
[8], where the decision whether a loop is parallel would be
accompanied by the appropriate concurrency level (number of
threads).

Predicting scalability is difficult because it highly depends
on both the code being executed and the underlying hardware.
One approach would be to treat the application as a black box
and try to use runtime measurements (e.g. via performance

counters) to predict its scalability, as is the case of the ACTOR
runtime system [11], [30]. Application-agnostic approaches,
however, ignore useful information that can be extracted from
the code. For example, an application will typically exhibit
different behavior in different parallel regions. Extracting the
boundaries of these regions using code analysis, a trivial task
for many parallel programming languages, can eliminate the
run-time overhead (e.g., due to sampling or stability concerns)
of application-agnostic methods asserting a behavioral change.

In this paper, we advocate the utilization of application
information collected both during compile and runtime, in
order to build a synergistic scalability predictor. In particular,
we consider a synergy between the compilation framework
and the parallel runtime system, where program information
collected statically remains alive during program execution,
and conveyed to the runtime system in order to support its
decision on the concurrency level for each parallel region.
We apply our mechanism to each separate parallel region of
the original application, which in our case refers to parallel
loops that operate on regular data structures (arrays). Our
approach sacrifices generality for simplicity. For example,
although it cannot be applied to arbitrary parallel programs
(e.g. those written using the pthread library), it makes it
trivial to identify the parallel regions of the program and
provide a different prediction for each region. As we show in
our evaluation, different regions may indeed have substantial
differences in their scaling. We need to mention, however, that
the restrictions induced by our scheme preclude a minority of
parallel regions, as the large majority of parallel constructs
facing scalability problems due to memory contention can be
successfully analyzed.

Our static analysis examines the loop body and classifies
operations as off-chip or on-chip and assigns a specific score to
each one of them. The key observation inspired by the roofline
performance prediction model [33], is that parallel constructs
with heavy off-chip traffic tend to saturate the memory bus
and thus fail to scale well with increasing number of cores. To
accurately characterize off-chip and on-chip activity we need
runtime information on the actual size of the data structures
involved in the execution of the parallel construct. This is the
only input brought in by the runtime system which finalizes
the prediction task by calculating the scalability level of the



parallel construct. We experiment with a simple prediction
model, which is the ratio of the on-chip to off-chip traffic
scores and use a small set of parallel loops to train a linear
regression model as our predictor. Although simple, our ex-
perimental results on two CMP machines using loops from
the Polybench suite [29], verify that the on-chip to off-chip
scores ratio shows a very high correlation to the scalability
level of the application. Regarding prediction accuracy, our
method shows acceptable accuracy being able to capture the
scalability behavior of parallel regions in the great majority of
the cases.

The rest of the paper is organized as follows: In Section II
we provide details about our scalability prediction framework,
accompanied by information about the architectural and appli-
cation model. Section III presents our model evaluation and
Section IV discusses related work. Section V discusses limi-
tations of our model and ideas for relaxing those limitations,
while Section VI concludes the paper.

II. A SYNERGISTIC SCALABILITY PREDICTOR

In prediction models there is an inherent tension between
precision, completeness and simplicity. The major goal of the
synergistic scalability predictor we present in this paper is to
facilitate an initial experimental evaluation. Hence, we often
choose to sacrifice precision and completeness to keep our
model as simple as possible.

A. Algorithmic model

A key characteristic of our approach is that, instead of
predicting the scalability of the whole program, it considers
each parallel region separately. For programs written in parallel
languages like OpenMP [26], our approach can be applied
naturally since parallel regions are constructs included in the
program’s syntax tree. In this paper specifically, we deal with
parallel regions that are built using parallel for loops, such
as the ones that can be constructed using a #pragma omp
parallel for directive in OpenMP. Although our model is
not conceptually tied to OpenMP, for the sake of brevity in
the rest of the paper we assume programs written in C using
OpenMP.

Algorithm 1: Algorithmic model
for (i0 = L0; i0 < U0; i0 += c0) do

CS1

for (i1 = L1; i1 < U1; i1 += c1) do
CS2

for (in = Ln; in < Un; in += cn) do
CSn

...
...

To make the application of our static analysis straight-
forward, we place a number of restrictions on the parallel
loops we consider. Algorithm 1 presents the application model
subject to our analysis. The following hold:

- Any loop in the nest is potentially parallel and thus can
be parallelized by the appropriate directive. Legality

of parallelization and insertion of the directive is
left to the programmer. A single loop in the nest is
parallelized (no nesting parallelism is supported).

- Each loop body is a compound statement CSi which
can include either a for loop (implying recursive
definition of our model), or a set of instructions that
do not affect the control flow, including arithmetic
operations, loads and stores, and excluding conditional
or unconditional jumps, function calls, return state-
ments, etc.

- The loops are in canonical form as required by the
OpenMP standard [26]. This restriction implies that
it is possible to determine the iteration space of each
loop before entering it. Hence, the runtime system is
able to calculate the number of iterations for each loop
before its execution.

- Loop bodies are free of critical sections and synchro-
nization operations in general.

- Loop bodies contain operations on regular data struc-
tures (e.g. multidimensional arrays). We assume that
the size of the arrays is known at runtime.

Although our model might seem quite restrictive, large
classes of parallel applications especially in scientific com-
puting involve code segments that follow the aforementioned
model. In particular, the model can embrace the large ma-
jority of loop constructs in the Polybench [29] and NAS [3]
suites. Moreover, such parallel regions are typically prone to
scalability limitations due to memory bandwidth saturation.
Hence, despite the simplifications, we were able to evaluate
our approach on a large number of parallel loops from the
Polybench suite (see Section III).

B. On-chip to off-chip ratio

We use a simple hardware model: we assume an UMA
architecture where all cores access a single memory node, and
a single cache between each core and the memory. In par with
most hardware implementations, we assume a write-back cache
policy. Finally we set the cache size to the size of the last level
cache (LLC).

Since we are concerned with scalability problems caused
by multiple cores accessing the shared memory node, we
distinguish between two operation classes: on-chip operations,
i.e. ALU operations and data accesses serviced by the memory
hierarchy up to (and including) the LLC, and off-chip opera-
tions, i.e. operations which include memory accesses that need
to be serviced by main memory. A key observation inspired
by the roofline model [33] is that parallel regions dominated
by on-chip activity exhibit good scalability, while the opposite
holds for regions dominated by off-chip activity. In an attempt
to quantify this observation, we calculate a score for each
class: a “goodness” score (Sg) for scalable operations, and
a “badness” score (Sb) for non-scalable operations:

Sg =
∑
o∈Oon

no · wo Sb =
∑

o∈Ooff

no · wo

In the above formulas, Oon (Ooff) is the set of on-chip (off-
chip) operations, no is the number of operations o in the loop,



and wo is the weight of operation o. The weights represent the
effect of each operation on the score. For example, expensive
arithmetic operations (e.g. division) have a greater impact
on Sg than fast operations (e.g. addition). Oon consists of
arithmetic operations (addition, multiplication, division, etc)
and memory accesses that result to cache hits, while Ooff
consists of memory accesses that result to cache misses. To
account for their different effect in scalability, we differentiate
between streaming and latency misses, as well as read and
write misses. Streaming misses, especially with prefetchers
employed by modern hardware, tend to create ample memory
traffic restraining scalability. On the other hand, misses with
increased latency, although having cost at execution time, lead
to less memory traffic and disrupt scalability to a lesser degree.
Tables I and II show the weights for both machines (Dunning-
ton and Sandy Bridge) used in our evaluation (see Section III).
At the moment, the weights are specified based on empirical
observations, being inline however with the manufacturer’s
specifications. Future work involves the calculation of these
weights using a set of artificial microbenchmarks.

operation weight
addition/subtraction 1
multiplication 2
division 4
cache hit 3

TABLE I. ON-CHIP OPERATIONS WEIGHTS FOR DUNNINGTON AND
SANDY BRIDGE

streaming latency
read 2 1
write 3 1

TABLE II. OFF-CHIP OPERATIONS WEIGHTS FOR DUNNINGTON AND
SANDY BRIDGE

For each parallel region in the application under analysis
we calculate the on-chip to off-chip ratio Sr =

Sg

Sb
. To simplify

our approach, compound statements at levels higher than the
innermost one are considered to make a negligible contribution
to the region’s activity, and thus, are ignored. This could lead
to mispredictions for cases where substantial computation load
is located in outer loops. We need to point out, however,
that we faced no such case in our experiments so far, so
were not motivated to be more elaborate in this aspect. Yet,
we can easily extend our approach to analyze computations
everywhere in the nest. Moreover, the total Sr of a compound
statement is calculated by considering contributions across
all statements. Next we discuss our approach for classifying
memory accesses as on-chip or off-chip.

C. Classifying memory accesses

Our main challenge is to classify memory accesses. To this
direction, we follow the strategy described below:

- For each array reference in the compound statement
we calculate its reuse distance [12], i.e. the number
of unique memory locations accessed between a pair
of accesses to a particular data item. If the reuse
distance is smaller than the LLC size, the reference
is considered a hit.

- If the reuse distance is larger than the LLC size we
consider the accesses to be a potential miss with a

probability p which is:

p =

{
0, ws ≤ cs
ws−cs
ws , ws > cs (1)

where ws is the working set size and cs the LLC
size. The working set size is calculated as the sum
of the sizes of the arrays. In this case we calculate
the expected value of the weight, i.e. we multiply the
probability with the weight.

- If the fastest changing dimension of the array is in-
dexed using the innermost loop index, we characterize
a miss as streaming, otherwise we characterize it as a
latency miss. Accesses to scalar variables are ignored.

Calculating the Sr ratio is performed with a compile and
runtime synergy. Static analysis is responsible for calculating
Sr as a function of the ws. The runtime system only feeds the
actual value of the ws parameter for the running instantiation
of the program, to calculate the final value of Sr.

Example 1: We illustrate our classification using Listing 1
as an example, which is the nested loop at line 72 of the
adi benchmark taken from Polybench. The second loop is
parallelized. Arrays A, B and X are accessed more than once
and there is a probability that some parts of them will remain
in the LLC, thus we use Equation (1). Assuming execution
on the Dunnington machine (see Section III for more details),
cs = 64MiB. If arrays store double types and have dimen-
sions 4000× 4000, then ws = 3 · 8 · 40002 and p = 0.825.

1 for (t = 0; t < _PB_TSTEPS; t++) {
2 #pragma omp parallel for
3 for (i1 = 0; i1 < _PB_N; i1++)
4 for (i2 = 1; i2 < _PB_N; i2++) {
5 X[i1][i2] = X[i1][i2] - X[i1][i2-1]
6 * A[i1][i2] / B[i1][i2-1];
7 B[i1][i2] = B[i1][i2] - A[i1][i2]
8 * A[i1][i2] / B[i1][i2-1];
9 }

10 }

Listing 1. adi line 72

We calculate the “good” and “bad” scores for each state-
ment separately and sum them to calculate the final score.
The first statement includes 3 streaming read misses since
X[i1][i2], A[i1][i2] and B[i1][i2-1] are indexed by
the innermost index variable, and one write miss when writing
X[i1][i2]. The access to X[i1][i2-1] is considered a hit,
as its reuse distance is smaller than the LLC cache size, and
thus it will be served by the cache. Using the operation weights
above, with Misses = 4, Hits = 1, and the formulas:

Sg =Hit Weight ∗ ((1− p) ∗Misses+Hits)+∑
i∈Ar Inst

Weighti ·Occurrencesi

Sb =WStream Read Miss ∗ p ∗ Stream Read Miss+

WStream Write Miss ∗ p ∗ Stream Write Miss+

WLatency Read Miss ∗ p ∗ Latency Read Miss+

WLatency Write Miss ∗ p ∗ Latency Write Miss



we have a good score of 12.1, a bad score of 7.43. Using the
same procedure for the second statement, we have 1 streaming
write miss and 4 hits, since we reuse data from the previous
statement. This way, the good score for this statement is 19.52
and the bad is 2.48. Thus, the total score of the loop is Sr =
12.1+19.52
7.43+2.48 = 3.19.

Example 2: The example of Listing 2, is taken from the
2mm benchmark (line 83) of Polybench. The outer loop is
parallelized. In this case, arrays tmp and A are considered to
be found in the cache, since each element of tmp is reused

PB NK times and each row of A is reused PB NJ times
(we assume that a row can fit in the biggest cache available).
This way, since they are not being referenced using only the
2 innermost indices of the nested loops, their reuse distance
is 0. Meanwhile, array B is considered to be a latency miss,
since it is being referenced using the 2 innermost indices of
the nested loops, which means that the whole of the array is
referenced before any reuse takes place and also it is referenced
by columns, rather than by rows. This miss also is under
a probability, since the array is referenced multiple times in
total. Statement tmp[i][j] = 0; is ignored, since it is not
included in the innermost loop. Using the above formulas, we
have a good score of 14.52, a bad score of 0.89 and a ratio of
17.60 for the loop.

1 #pragma omp parallel for
2 for (i = 0; i < _PB_NI; i++)
3 for (j = 0; j < _PB_NJ; j++) {
4 tmp[i][j] = 0;
5 for (k = 0; k < _PB_NK; ++k)
6 tmp[i][j] += alpha * A[i][k] * B[k][j];
7 }

Listing 2. 2mm line 83

D. Scalability prediction

We base our prediction on the Sr = Sg/Sb ratio. Intu-
itively, the higher the ratio, the better the scalability of the
parallel loop. To map Sr to the maximum speedup of a loop
σ, we assume that σ is a piecewise function of Sr as follows:

σ(Sr) =

{
α · Sr + β Sr ≤ sp
σmax Sr > sp

That is, we assume that σ is a linear function of Sr up to a split
point (sp) where maximum speedup σmax is reached (typically
equal, or almost equal to the number of available cores). The
parameters α, β and sp of σ are hardware specific, and are
calculated using linear regression over the maximum speedup
of a set of training loops (see Section III for more details).

III. EVALUATION

In this section we provide evaluation results for our predic-
tion mechanism. We need to test the viability of our predictor
by checking the correlation of Sr with the actual speedup,
and, more importantly, the ability of our scheme to predict the
speedup with some acceptable accuracy.

1) Data set: We performed our evaluation using the 60
loops of the Polybench [29] suite. We had to discard 5 loops
because they violated the restrictions of our model regarding
the structure of the loop nest. Yet, these loops could be easily
embraced by our model with straightforward extensions (left

for future work). We had to also discard 6 loops that could not
be legally parallelized. Finally, we also excluded 9 loops with
trivial loads (basically initialization loops) that would bias our
experimental analysis, and thus worked on 40 loops in total.
We experimented with two data set sizes, one much larger
than the LLC size and one almost equal to the LLC size. We
parallelized the loops manually.

We split the loops into two sets: a training set consisting
of 11 loops, used to calculate parameters α, β and sp (see
Table III), and a testing set containing the remainder 29 loops
used to evaluate the approach (see Table IV). We selected a
training set covering a wide range of score ratios Sr.

Benchmark Line Sr (Dunnington)
3mm 99 15.2
atax 73 12.0
doitgen 68 20.0
fdtd-apml 130 3.7
fdtd-apml 139 2.4
gemm 77 17.6
gemver 92 3.6
gemver 96 11.0
gemver 103 7.0
reg detect 79 0.8
syr2k 79 8.8

TABLE III. POLYBENCH TRAINING SET LOOPS

Benchmark Line Sr (Dunnington)
2mm 83 17.6
2mm 92 15.2
3mm 79 15.2
3mm 89 15.2
adi 72 3.2
adi 80 0.6
adi 84 1.1
adi 96 0.6
atax 70 6.0
covariance 68 7.0
covariance 78 0.8
covariance 84 17.3
dynprog 69 2.0
fdtd-2d 88 2.3
fdtd-2d 93 1.0
fdtd-apml 153 20.0
fdtd-apml 166 8.8
floyd-warshall 63 1.4
gemver 102 3.6
gesummv 77 6.0
jacobi-2d-imper 71 0.8
lu 66 1.4
lu 71 1.8
mvt 76 6.0
mvt 81 12.0
reg detect 80 0.8
syr2k 77 1.7
syrk 72 1.7
syrk 77 10.0

TABLE IV. POLYBENCH TESTING SET LOOPS

2) Hardware Platforms: For the evaluation of our pre-
diction model, we used two hardware platforms. We took
measurements using high precision timer, based on cpu ticks,
which dictated that measurements should be taken on the same
cpu before and after a parallel region.

a) Dunnington: The first platform is a 24-core
Dunnington-based node with the following characteristics (see
also Figure 1): 4 physical packages, 6 cores per package, 32
KB L1 cache per core, 3 MB L2 cache shared by 2 cores,



16 MB L3 cache per package and 8 GB RAM. This platform
was running an x86 64 version of Debian Squeeze (6.0.7),
with version 3.7.10-1 of the Linux kernel. Programs were
compiled with gcc version 4.6.3 (implementing version 3.0
of the OpenMP standard), with the -O3 optimization flags.
Averages of three runs are presented.
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Fig. 1. Dunnington Layout
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Fig. 2. Sandy Bridge Layout

b) Sandy Bridge: The second platform is a 8-core
NUMA Sandy Bridge node with the following characteristics
(see also Figure 2): 1 physical package, 8 cores per package,
16 KB L1 cache per core, 256 KB L2 cache per core, 16 MB
L3 cache per package and 256 GB RAM. Operating system
and compiler version/flags are the same with Dunnington.

3) Configuration: A specific configuration was used for
the OpenMP runtime, using environmental variables and pre-
processor directives to control the assignment of threads in
available cores, the affinities of threads and the scheduling of
parallel regions. More specifically:

- OpenMP threads were assigned to cores in a way that
they use different L2 caches when possible (when not
all cores are used) while staying in the same package,
since we want to apply our model and measure its
success in predicting utilization in a per-package level.
Also, this way we benefit from cross-processor reuse
of data, where this is possible.

- Wherever possible, static scheduling was used to avoid
thread management and scheduling overheads. In any
other case, scheduling was set to dynamic.

A. Correlation of Sr score with Speedup

In this set of experiments, our intention is to verify whether
the core of our prediction scheme, i.e. the Sr score ratio has
a good correlation with the actual region speedup. Figures 3
and 4 plot the speedup achieved by all benchmarking loops
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Fig. 3. Speedup as a function of Sr score for Dunnington for large data sets
not fitting the LLC
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Fig. 4. Speedup as a function of Sr score for Sandy Bridge for large data
sets not fitting the LLC

(both training and testing) as a function of Sr for the large
data sets. We can make the following remarks: a) The trend
of the speedup is successfully captured by Sr, as it succeeds
a 95.7% correlation in Dunnington and a 84.1% correlation in
Sandy Bridge, b) The two regions in the piecewise function
discussed in Section II are visible as indicated by the trend
lines in the graphs and c) in the two extremes of very low
or very high values for Sr, the landscape seems more clear,
especially in Dunnington.

B. Scalability prediction

In this set of experiments we compare the predicted
speedup provided by our mechanism with the maximum
speedup and the speedup achieved by the full utilization of
the machine cores. Figures 5 – 8 provide this information for
the loop regions of the testing set in the Dunnington and Sandy
Bridge machines respectively. Apart from the relative error, we
also employ as prediction error the metric

|predicted speedup−maximum speedup|
maximum number of cores

expressed in % which normalizes the absolute error in speedup
prediction to the range of possible speedup values (no super-
linear speedup is considered). Table V summarizes relative and
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Fig. 6. Dunnington speedups for small data sets fitting the LLC

prediction errors for the four experimental scenarios. Although
relative errors are quite high, we argue that the prediction
error is a better metric to assess the accuracy for a scalability
prediction model, as for example a prediction of speedup 3 in
a 24-core machine compared to an actual speedup of 1, would
give a relative error of 200%, although the predictor was able
to capture the problematic scalability of the code.

In Dunnington (where the prediction ranges between 0 and
24) with the large data set (Figure 5) our scalability predictor
had an average (maximum) prediction error of 8.8% (32.7%,

for fdtd-apml, line 166 loop, where our scheme predicted
a speedup of 10.3, while the maximum speedup was 18.1).
Regarding the small data set, our predictor had an average
(maximum) prediction error of 12.9% (48.9%, for adi, line 72
loop, where our scheme predicted a speedup of 21.6, while
the maximum speedup was 9.8, actually failing to provide an
acceptable prediction for this case).

In Sandy Bridge (where the prediction ranges between
0 and 8) with the large data set, the average (maximum)
prediction error was 15.3% (46.7%, for adi, line 72 loop,
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Fig. 7. Sandy Bridge speedups for large data sets not fitting the LLC
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Fig. 8. Sandy Bridge speedups for small data sets fitting the LLC

where our scheme predicted a speedup of 3.0 while the
maximum speedup was 6.7). For the small data set, the average
(maximum) prediction error was 18.5% (61.6%, for reg detect,
line 80 loop, where our scheme predicted a speedup of 2.0
while the maximum speedup was 6.9). Note that in the large
majority of the cases the full core speedup and maximum
speedup are either the same or very close together. In a few
cases there is a significant difference between them, as for
example in Sandy Bridge, syr2k, line 77 loop. Our model is
not trained to capture such behavior and thus presents this large

absolute error in this case. When compared to the speedup with
full core utilization, the prediction error drops to 16.0%.

Platform Data set prediction error (%) relative error (%)
min max avg min max avg

Dunnington large 0.1 32.7 8.8 4.3 232.5 45.6
small 2.0 48.9 12.9 3.1 193.5 72.8

Sandy Bridge large 3.4 46.7 15.3 1.0 389.2 73.8
small 0.3 61.6 18.5 1.0 145.9 40.7

TABLE V. PREDICTION ERRORS



We believe that the accuracy of our model is acceptable
for the purpose that it was designed, i.e. to facilitate the
decisions of a resource-aware allocation framework. Our model
is capable of capturing the “big picture” of scalability of a
parallel region, as it successfully follows the trend in all loops.
Qualitatively, if utilized to classify a parallel loop region as
“bad performing” (e.g. achieves a speedup close to or less than
25% of the number of the available cores), “fair performing”
(e.g. achieves a speedup roughly between 25% and 75% of
the number of the available cores), or “good performing” (e.g.
achieves a speedup close to or more than 75% of the number of
the available cores), it will provide a reliable prediction. In that
perspective, in 116 experiments involving two architectures
and two data set sizes, 101 predictions had an error smaller
than 25%. Yet, in the intermediate class of fair performing
loops, a better accuracy could be anticipated. Fine-tuning our
model to better predict scalability behavior in this case is left
for future work.

Finally, one interesting remark is that our model makes
better predictions when the system and data set size lead
to memory bound execution scenarios, as is the case of the
configuration in Dunnington with the large data set, while the
prediction error increases when we use data set fitting the LLC
and switching to Sandy Bridge that has a memory interconnect
with higher bandwidth. This is rather expected as our model is
designed to work under the assumption of memory bandwidth
limitations.

IV. RELATED WORK

Performance prediction, especially in the context of parallel
computing, has traditionally been an interesting topic, due
to its wide applicability. From the traditional performance
prediction models like Amdahl’s law [2], Gustavson’s law [17]
and the LogP model [10], to the more recent ones discussed
next, researchers have tried to capture the behavior of parallel
programs to meet a variety of objectives, including the efficient
use of resources, the design of new architectures, system
procurement, the decision of whether it would pay off to go
parallel or optimize a specific application, etc. Depending on
their objective, prediction models may trade accuracy for speed
or vice versa, or provide lower and/or upper bounds to guide
the relevant decisions. When the prediction accuracy is not
satisfactory, or the size of the parameter space is too large,
autotuning is a viable alternative [16], [32].

Performance prediction was a significant component
of automatic parallelizing compilers for massively parallel
distributed-memory machines back in the 90’s [15], [27]. The
same holds for MPI programs where several extensions of the
LogP model have been proposed [1], [9], [18]. The key perfor-
mance bottleneck that needs to be captured in the above cases
is the communication overhead, a challenge that still remains
open in today’s supercomputers consisting of multicore nodes
[19]. Our approach targets inter-node performance bottlenecks
and can be combined with prediction models focusing on the
communication overhead.

With a goal to predict scalability of applications in large-
scale, HPC systems, Barnes et al. [4] present a regression-
based approach that correlates scalability to input variables.
Their method is applied offline, and targets large-scale sys-
tems. Lee et al. [23] compare the effectiveness of piecewise

polynomial regression and artificial neural networks (ANNs)
to predict performance in the context of varying input. To fa-
cilitate system architecture decisions, the Phantom framework
uses execution traces from a single node to predict application
performance in large scale environments.

A number of research papers focus on predicting the behav-
ior of applications that suffer from contention in the memory
hierarchy. Within the context of co-existing applications in
the same multicore platform, researchers work on the critical
properties of contentiousness (how much an application’s
execution affects other applications) and sensitivity (how much
an application is affected by the execution of other applications
[31], [34]. Cache Pirate [13] and Bandwidth Bandit [14]
provide information on the slowdown an application may suffer
when the LLC and memory bus respectively operate under
contention.

Our work is inspired by the roofline model [33]. Roofline
incorporates the significant performance gap between the
CPU and memory with a goal to capture the performance
of memory-bound applications as well. The model utilizes
two architectural characteristics, peak CPU performance and
memory bandwidth, and one application characteristic, the
flop/byte ratio, to predict application performance. However,
although memory bandwidth can be rather accurately measured
(e.g. with a benchmark like STREAM [24]), peak CPU power
depends on the mixture of computations performed by the
application, and thus to some extent is application-dependent,
while the flop/byte ratio cannot be easily determined since
one needs to decide whether memory accesses are serviced by
DRAM or the cache hierarchy. For these reasons, the roofline
model cannot be applied directly to calculate multithreaded
scalability, especially at compile time where important runtime
information about the overall working set is absent. Our work
refines upon the roofline model, and bases its prediction on an
“on-chip to off-chip activity” ratio, analogous to the flop/byte
ratio. We utilize information on the size of the LLC and the
runtime size of the working set to classify memory accesses as
hits or misses and do not use architectural parameters like peak
CPU performance or memory bandwidth, which are implicitly
incorporated in our model through the training process.

In this paper we focus on prediction models targeting
multithreaded applications in CMP machines. Within this
context, Kismet [20] provides speedup estimates of unmodified
serial programs based on extensive offline analysis. Its goal is
to provide upper bounds for scalability to support decisions
regarding the benefits of a software parallelization process. The
model does not account for memory bandwidth saturation, and
thus fails to predict scalability limitations due to this critical
factor. Parallel Prophet [21] reduces the analysis overheads and
takes into account memory bandwidth saturation, but again the
approach is applicable to offline decisions.

Our work is directly relevant to previous approaches elabo-
rating on online scalability prediction to facilitate concurrency
throttling. Similar to the goal of our work, The ACTOR
runtime system [11], [30] seeks the optimal operating point of
concurrency in multithreaded programs at the granularity of
program phases dynamically, by feeding information collected
by the machine’s performance counters to a predictor based on
regression or ANN. The phases handled by ACTOR are more
generic than ours as presented in Section II-A, but its approach



requires an online sampling period where different configura-
tions need to be tested. Apart from the additional overhead of
the sampling phase, a straightforward implementation of this
scheme would require parallel phases to be included inside
an outer sequential loop, this being a restriction for ACTOR
not present in our approach, which is able to decide upon the
concurrency levels prior to the execution of a parallel phase.
In any case, our method can work in a complementary way to
similar purely dynamic schemes, by drastically restricting the
search space within their sampling period.

V. LIMITATIONS AND FUTURE WORK

Our initial evaluation shows that our approach holds some
promise since it reasonably predicts the scalability of a large
class of parallel loops. Our current model, however, has a
limited scope since it was developed to facilitate an initial
experimental evaluation to investigate its potential. In the next
paragraphs, we discuss what are the main limitations of our
current model, and how we plan to address them in the future.

a) Algorithmic model: Although our algorithmic model
is able to capture a large number of parallel loops, it enforces
restrictions which potentially limit its applicability. One of
these restrictions is that it does not allow function calls inside
the body of loops. Although addressing the general case
of this problem —especially if recursion is involved— is a
very challenging task, we argue that a significant number
of practical cases can be solved by applying interprocedural
techniques already within the capabilities of modern compilers
such as gcc and clang/LLVM.

Another important programming construct that is not cur-
rently supported is synchronization primitives such as the
OpenMP critical construct (#pragma omp critical). Our
current model is not able to deal with these constructs because
it only considers memory contention as the source of scalabil-
ity problems. We plan to address this issue by extending our
model to support multiple classes of “badness” and “goodness”
scores, one per each potential scalability bottleneck. Using
the same methodology, we will end up with multiple ratios
that will need to be considered for our prediction. A simple
approach would be to select the ratio that causes the greatest
scalability obstruction. Furthermore, future work involves re-
laxing some of our restrictions to include nested parallelism,
operations on irregular data structures, affine functions of the
enclosing loop iterators as loop bounds, and generally increase
the coverage of our predictor.

b) Hardware model: Modern multicore hardware ex-
hibits high diversity. Multicore systems include complex cache
hierarchies where caches are shared between some cores,
support multiple hardware contexts in the same core (SMT),
and employ NUMA techniques to allow for scalable memory
access. On one hand, a detailed hardware model can lead to
more precise predictions, but on the other hand it significantly
complicates the parameter extraction using training and the
overall prediction. Hence, the main challenge is to find the
minimal model that can lead to adequate predictions. We plan
to tackle this problem using a workload driven approach.
That is, rather than fully modeling the current hardware, use
experimental analysis to determine which are the factors that
have the greater impact and focus only on them.

c) Improving prediction accuracy: Experimental results
demonstrated that our model is able to capture the general
scalability trends but may face problems in cases where its
scoring Sr falls between the range of low and high score.
Prediction accuracy in this case could be improved by elabo-
rating more on the model and investigating the actual reasons
for mispredictions.

d) Predicting core assignment: Our current model pre-
dicts the maximum speedup of parallel loops. To maximize its
utility, however, we also need to find the minimum number
of cores that maximize the parallel speedup. This information
can be communicated from the parallel runtime system to
the OS scheduler, so that the latter can make appropriate
scheduling decisions regarding the number of cores assigned
to each parallel loop. A simple approach would be to assume
linear scalability until the loop reaches the “roof”, where it
remains constant. In other words, if σ is the maximum speedup
of a loop, assume that assigning dσe cores will result in
a speedup of σ. As it is expected, however, parallel loops
rarely exhibit linear scalability and according to our initial
experimental results this approach underestimates the number
of cores needed to reach the maximum speedup. Hence, as
future work we aim to exploit additional information from the
training set execution, i.e. not just the maximum speedup but
also the behaviour of each loop for different core assignments,
for predicting the minimum number of cores required to
achieve maximum speedup.

e) Implementation: Finally, our current model is ap-
plied manually and some of its parameters (i.e. operation
weights) are determined empirically. Our goal is to build
a static compiler analysis (e.g. using a gcc plugin) which,
along with the appropriate runtime functionality, will be able
to apply our model automatically in parallel OpenMP loops.
We plan to start with a simple implementation that supports
what we describe here and gradually extend it to support
additional parallel loops taken from benchmarks and real-
world applications.

VI. CONCLUSIONS

In this paper we worked towards the implementation of
a synergistic scalability predictor for parallel regions. We
performed an initial evaluation of a mechanism that utilizes
both compile and runtime information to predict the maximum
speedup of a parallel loop construct. Our approach is based on
the formulation of an on-chip to off-chip activity ratio that is
associated with the application’s speedup on a specific machine
through the use of linear regression. Our model is trained with
a limited set of loop constructs and evaluated on a wider set
of loops over two CMP machines. Evaluation results show a
promising performance of our prediction approach that could
be further utilized to assist a resource-aware allocation policy.
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