
Compiling Neural Networks for a Computational Memory Accelerator

Kornilios Kourtis 1 Martino Dazzi 2 Nikolas Ioannou 2 Tobias Grosser 3

Abu Sebastian 2 Evangelos Eleftheriou 2

1 Independent 2 IBM Research 3 ETH Zurich

April 27, 2020

SPMA 2020 1

Introduction

I Traditional HW designs have reached their limits
I Applications that require improved performance, turn to specialized HW

A notable application domain where above applies is Neural Networks (NNs)

I widely used

I specialized (not general purpose) computations, expressed as dataflow graphs

As a result, many attempts to accelerate their performance

I GPUs (e.g., NVIDIA’s cuDNN), ASICs (e.g., Google TPU), FPGAs (e.g., Microsoft Brainwave)

I We use Computational Memory

SPMA 2020 2

Introduction

I Traditional HW designs have reached their limits
I Applications that require improved performance, turn to specialized HW

A notable application domain where above applies is Neural Networks (NNs)

I widely used

I specialized (not general purpose) computations, expressed as dataflow graphs

As a result, many attempts to accelerate their performance

I GPUs (e.g., NVIDIA’s cuDNN), ASICs (e.g., Google TPU), FPGAs (e.g., Microsoft Brainwave)

I We use Computational Memory

SPMA 2020 2

Introduction

I Traditional HW designs have reached their limits
I Applications that require improved performance, turn to specialized HW

A notable application domain where above applies is Neural Networks (NNs)

I widely used

I specialized (not general purpose) computations, expressed as dataflow graphs

As a result, many attempts to accelerate their performance

I GPUs (e.g., NVIDIA’s cuDNN), ASICs (e.g., Google TPU), FPGAs (e.g., Microsoft Brainwave)

I We use Computational Memory

SPMA 2020 2

Introduction

I Traditional HW designs have reached their limits
I Applications that require improved performance, turn to specialized HW

A notable application domain where above applies is Neural Networks (NNs)

I widely used

I specialized (not general purpose) computations, expressed as dataflow graphs

As a result, many attempts to accelerate their performance

I GPUs (e.g., NVIDIA’s cuDNN), ASICs (e.g., Google TPU), FPGAs (e.g., Microsoft Brainwave)

I We use Computational Memory

SPMA 2020 2

Computational Memory

Exploit the physical attributes of the memory devices to perform computations at the place
where data are stored.

(In contrast with traditional designs where computation and memory are separate.)

SPMA 2020 3

Computational memory (CM) crossbar

Basic unit is a memristive crossbar array that can:

I store a matrix M
I perform an analog matrix vector multiplication

(M × v) operation
(input: v , output: M × v)

Benefits:

I M × v can be executed in a single step
(while digital logic typically requires multiple steps)

I reduced communication
(main challenge for data-intensive workloads)

IN

OUT

Our CM accelerator comprises multiple cores with such crossbars

SPMA 2020 4

Computational memory (CM) crossbar

Basic unit is a memristive crossbar array that can:

I store a matrix M
I perform an analog matrix vector multiplication

(M × v) operation
(input: v , output: M × v)

Benefits:

I M × v can be executed in a single step
(while digital logic typically requires multiple steps)

I reduced communication
(main challenge for data-intensive workloads)

IN

OUT

Our CM accelerator comprises multiple cores with such crossbars

SPMA 2020 4

Computational memory (CM) crossbar

Basic unit is a memristive crossbar array that can:

I store a matrix M
I perform an analog matrix vector multiplication

(M × v) operation
(input: v , output: M × v)

Benefits:

I M × v can be executed in a single step
(while digital logic typically requires multiple steps)

I reduced communication
(main challenge for data-intensive workloads)

IN

OUT

Our CM accelerator comprises multiple cores with such crossbars

SPMA 2020 4

What about software?

I Traditional accelerators use
data parallelism

I This will not work for the CM
accelerator

- built with PCM (or Flash)
- reprogramming crossbars takes

too long

I Instead, we use
pipeline parallelism

L1 L2

NN dataflow graph

Data parallel execution on two coresPipeline execution on two cores

C1/L1

C2/L1

I1

I2

L1(I1)

L1(I2)
step 1:

C1/L2

C2/L2

L1(I1)

L1(I2)

L2(L1(I1))

L2(L1(I2))
step 2:

C1/L1 C2/L2I1 L2(L1(I1))step 1:

C1/L1 C2/L2I1 L2(L1(I1))step 2:

I Existing compilers (e.g., Glow, TVM, XLA) offer no help for pipeline parallelism

SPMA 2020 5

What about software?

I Traditional accelerators use
data parallelism

I This will not work for the CM
accelerator

- built with PCM (or Flash)
- reprogramming crossbars takes

too long

I Instead, we use
pipeline parallelism

L1 L2

NN dataflow graph

Data parallel execution on two coresPipeline execution on two cores

C1/L1

C2/L1

I1

I2

L1(I1)

L1(I2)
step 1:

C1/L2

C2/L2

L1(I1)

L1(I2)

L2(L1(I1))

L2(L1(I2))
step 2:

C1/L1 C2/L2I1 L2(L1(I1))step 1:

C1/L1 C2/L2I1 L2(L1(I1))step 2:

I Existing compilers (e.g., Glow, TVM, XLA) offer no help for pipeline parallelism

SPMA 2020 5

What about software?

I Traditional accelerators use
data parallelism

I This will not work for the CM
accelerator

- built with PCM (or Flash)
- reprogramming crossbars takes

too long

I Instead, we use
pipeline parallelism

L1 L2

NN dataflow graph

Data parallel execution on two cores

Pipeline execution on two cores

C1/L1

C2/L1

I1

I2

L1(I1)

L1(I2)
step 1:

C1/L2

C2/L2

L1(I1)

L1(I2)

L2(L1(I1))

L2(L1(I2))
step 2:

C1/L1 C2/L2I1 L2(L1(I1))step 1:

C1/L1 C2/L2I1 L2(L1(I1))step 2:

I Existing compilers (e.g., Glow, TVM, XLA) offer no help for pipeline parallelism

SPMA 2020 5

What about software?

I Traditional accelerators use
data parallelism

I This will not work for the CM
accelerator

- built with PCM (or Flash)
- reprogramming crossbars takes

too long

I Instead, we use
pipeline parallelism

L1 L2

NN dataflow graph

Data parallel execution on two cores

Pipeline execution on two cores

C1/L1

C2/L1

I1

I2

L1(I1)

L1(I2)
step 1:

C1/L2

C2/L2

L1(I1)

L1(I2)

L2(L1(I1))

L2(L1(I2))
step 2:

C1/L1 C2/L2I1 L2(L1(I1))step 1:

C1/L1 C2/L2I1 L2(L1(I1))step 2:

I Existing compilers (e.g., Glow, TVM, XLA) offer no help for pipeline parallelism

SPMA 2020 5

What about software?

I Traditional accelerators use
data parallelism

I This will not work for the CM
accelerator

- built with PCM (or Flash)
- reprogramming crossbars takes

too long

I Instead, we use
pipeline parallelism

L1 L2

NN dataflow graph

Data parallel execution on two cores

Pipeline execution on two cores

C1/L1

C2/L1

I1

I2

L1(I1)

L1(I2)
step 1:

C1/L2

C2/L2

L1(I1)

L1(I2)

L2(L1(I1))

L2(L1(I2))
step 2:

C1/L1 C2/L2I1 L2(L1(I1))step 1:

C1/L1 C2/L2I1 L2(L1(I1))step 2:

I Existing compilers (e.g., Glow, TVM, XLA) offer no help for pipeline parallelism

SPMA 2020 5

What about software?

I Traditional accelerators use
data parallelism

I This will not work for the CM
accelerator

- built with PCM (or Flash)
- reprogramming crossbars takes

too long

I Instead, we use
pipeline parallelism

L1 L2

NN dataflow graph

Data parallel execution on two coresPipeline execution on two cores

C1/L1

C2/L1

I1

I2

L1(I1)

L1(I2)
step 1:

C1/L2

C2/L2

L1(I1)

L1(I2)

L2(L1(I1))

L2(L1(I2))
step 2:

C1/L1 C2/L2I1 L2(L1(I1))step 1:

C1/L1 C2/L2I1 L2(L1(I1))step 2:

I Existing compilers (e.g., Glow, TVM, XLA) offer no help for pipeline parallelism

SPMA 2020 5

What about software?

I Traditional accelerators use
data parallelism

I This will not work for the CM
accelerator

- built with PCM (or Flash)
- reprogramming crossbars takes

too long

I Instead, we use
pipeline parallelism

L1 L2

NN dataflow graph

Data parallel execution on two cores

Pipeline execution on two cores

C1/L1

C2/L1

I1

I2

L1(I1)

L1(I2)
step 1:

C1/L2

C2/L2

L1(I1)

L1(I2)

L2(L1(I1))

L2(L1(I2))
step 2:

C1/L1 C2/L2I1 L2(L1(I1))step 1:

C1/L1 C2/L2I1 L2(L1(I1))step 2:

I Existing compilers (e.g., Glow, TVM, XLA) offer no help for pipeline parallelism

SPMA 2020 5

What about software?

I Traditional accelerators use
data parallelism

I This will not work for the CM
accelerator

- built with PCM (or Flash)
- reprogramming crossbars takes

too long

I Instead, we use
pipeline parallelism

L1 L2

NN dataflow graph

Data parallel execution on two cores

Pipeline execution on two cores

C1/L1

C2/L1

I1

I2

L1(I1)

L1(I2)
step 1:

C1/L2

C2/L2

L1(I1)

L1(I2)

L2(L1(I1))

L2(L1(I2))
step 2:

C1/L1 C2/L2I1 L2(L1(I1))step 1:

C1/L1 C2/L2I1 L2(L1(I1))step 2:

I Existing compilers (e.g., Glow, TVM, XLA) offer no help for pipeline parallelism

SPMA 2020 5

What about software?

I Traditional accelerators use
data parallelism

I This will not work for the CM
accelerator

- built with PCM (or Flash)
- reprogramming crossbars takes

too long

I Instead, we use
pipeline parallelism

L1 L2

NN dataflow graph

Data parallel execution on two cores

Pipeline execution on two cores

C1/L1

C2/L1

I1

I2

L1(I1)

L1(I2)
step 1:

C1/L2

C2/L2

L1(I1)

L1(I2)

L2(L1(I1))

L2(L1(I2))
step 2:

C1/L1 C2/L2I1 L2(L1(I1))step 1:

C1/L1 C2/L2I1 L2(L1(I1))step 2:

I Existing compilers (e.g., Glow, TVM, XLA) offer no help for pipeline parallelism

SPMA 2020 5

Outline

Our goal is build a SW stack for a CM accelerator for NNs

I co-design SW with HW

1. Hardware: CM accelerator
I Chip comprising multiple cores, each including a crossbar
I (explicit) Dataflow engine

2. Software: Compiler for mapping aribtrary NNs onto the chip
I software architecture
I implementing dependency control between the cores

Scope:

I Convolutional NNs (CNNs)

I Inference, specifically on the edge

SPMA 2020 6

Outline

Our goal is build a SW stack for a CM accelerator for NNs

I co-design SW with HW

1. Hardware: CM accelerator
I Chip comprising multiple cores, each including a crossbar
I (explicit) Dataflow engine

2. Software: Compiler for mapping aribtrary NNs onto the chip
I software architecture
I implementing dependency control between the cores

Scope:

I Convolutional NNs (CNNs)

I Inference, specifically on the edge

SPMA 2020 6

Outline

Our goal is build a SW stack for a CM accelerator for NNs

I co-design SW with HW

1. Hardware: CM accelerator
I Chip comprising multiple cores, each including a crossbar
I (explicit) Dataflow engine

2. Software: Compiler for mapping aribtrary NNs onto the chip
I software architecture
I implementing dependency control between the cores

Scope:

I Convolutional NNs (CNNs)

I Inference, specifically on the edge

SPMA 2020 6

Outline

Our goal is build a SW stack for a CM accelerator for NNs

I co-design SW with HW

1. Hardware: CM accelerator
I Chip comprising multiple cores, each including a crossbar
I (explicit) Dataflow engine

2. Software: Compiler for mapping aribtrary NNs onto the chip
I software architecture
I implementing dependency control between the cores

Scope:

I Convolutional NNs (CNNs)

I Inference, specifically on the edge

SPMA 2020 6

CM accelerator (chip)

I CM Cores
I GMEM: chip memory
I GCU: Global Control Unit

orchestrates data transfers between
external (e.g., host) memory and GMEM,
as well as between GMEM and cores-local
memory.

I interconnect network

GCU GMEM

CM core

CM accelerator

SPMA 2020 7

CM core

D
A
C

(I
N
)

ADC (OUT)

XBAR

DPUMEM

LCU

CM core

Interconnect

SPMA 2020 8

CM core

I XBAR: analog crossbar, MxV

I DPU: digital processing unit
I MEM: local memory
I LCU: local control unit

D
A
C

(I
N
)

ADC (OUT)

XBAR

DPUMEM

LCU

CM core

Interconnect

SPMA 2020 8

CM core

I XBAR: analog crossbar, MxV
I DPU: digital processing unit

I MEM: local memory
I LCU: local control unit

D
A
C

(I
N
)

ADC (OUT)

XBAR

DPU

MEM

LCU

CM core

Interconnect

SPMA 2020 8

CM core

I XBAR: analog crossbar, MxV
I DPU: digital processing unit
I MEM: local memory

I LCU: local control unit

D
A
C

(I
N
)

ADC (OUT)

XBAR

DPUMEM

LCU

CM core

Interconnect

SPMA 2020 8

CM core

I XBAR: analog crossbar, MxV
I DPU: digital processing unit
I MEM: local memory
I LCU: local control unit

D
A
C

(I
N
)

ADC (OUT)

XBAR

DPUMEM

LCU

CM core

Interconnect

SPMA 2020 8

CM core

¶ LCU transfers data from MEM to XBAR,
and initiates crossbar operation.

· XBAR output is made available to DPU,
which executes its instructions.

¸ DPU may load and store data to local
memory

¹ Data from local memory may be
transferred to other cores via the
interconnect.

º Data via the interconnect arrive at local
memory, and act as input to LCU’s state
machine (À) which may trigger the next
operation (Á).

D
A
C

(I
N
)

ADC (OUT)

XBAR

DPUMEM

LCU

CM core

Interconnect

¶

SPMA 2020 8

CM core

¶ LCU transfers data from MEM to XBAR,
and initiates crossbar operation.

· XBAR output is made available to DPU,
which executes its instructions.

¸ DPU may load and store data to local
memory

¹ Data from local memory may be
transferred to other cores via the
interconnect.

º Data via the interconnect arrive at local
memory, and act as input to LCU’s state
machine (À) which may trigger the next
operation (Á).

D
A
C

(I
N
)

ADC (OUT)

XBAR

DPUMEM

LCU

CM core

Interconnect

¶
·

SPMA 2020 8

CM core

¶ LCU transfers data from MEM to XBAR,
and initiates crossbar operation.

· XBAR output is made available to DPU,
which executes its instructions.

¸ DPU may load and store data to local
memory

¹ Data from local memory may be
transferred to other cores via the
interconnect.

º Data via the interconnect arrive at local
memory, and act as input to LCU’s state
machine (À) which may trigger the next
operation (Á).

D
A
C

(I
N
)

ADC (OUT)

XBAR

DPUMEM

LCU

CM core

Interconnect

¶
·

¸

SPMA 2020 8

CM core

¶ LCU transfers data from MEM to XBAR,
and initiates crossbar operation.

· XBAR output is made available to DPU,
which executes its instructions.

¸ DPU may load and store data to local
memory

¹ Data from local memory may be
transferred to other cores via the
interconnect.

º Data via the interconnect arrive at local
memory, and act as input to LCU’s state
machine (À) which may trigger the next
operation (Á).

D
A
C

(I
N
)

ADC (OUT)

XBAR

DPUMEM

LCU

CM core

Interconnect

¶
·

¸
¹

SPMA 2020 8

CM core

¶ LCU transfers data from MEM to XBAR,
and initiates crossbar operation.

· XBAR output is made available to DPU,
which executes its instructions.

¸ DPU may load and store data to local
memory

¹ Data from local memory may be
transferred to other cores via the
interconnect.

º Data via the interconnect arrive at local
memory, and act as input to LCU’s state
machine (À) which may trigger the next
operation (Á).

D
A
C

(I
N
)

ADC (OUT)

XBAR

DPUMEM

LCU

CM core

Interconnect

¶
·

¸
¹

º

À Á

SPMA 2020 8

Executing CNNs on the CM accelerator

I Convolutions are mapped to the crossbar’s MxV operation

I Everything else (e.g., activation functions) is executed on the DPU

I CNN layers are assigned to CM cores, forming a pipeline

CONV
core1:xbar

CONV
core2:xbar

ADD
core2:dpu

SPMA 2020 9

Executing CNNs on the CM accelerator

I Convolutions are mapped to the crossbar’s MxV operation

I Everything else (e.g., activation functions) is executed on the DPU

I CNN layers are assigned to CM cores, forming a pipeline

CONV
core1:xbar

CONV
core2:xbar

ADD
core2:dpu

SPMA 2020 9

Compiling NNs for the CM accelerator

Compilation:
I Input: an NN model (e.g., ONNX)

I a dataflow graph of operators (e.g., convolution, ReLU, etc.)
I values for the weights

I Output:
I configuration for the LCUs, GCU
I instructions for the DPU

SPMA 2020 10

Compilation steps

I Partitioning and Mapping
partition the NN dataflow graph and map each partition to a CM core, respecting
interconnect constrains.

I Lowering
For each partition, produce the corresponding configurations for LCUs and DPUs
I DPU configuration: a set of instructions
I LCU configuration: a state machine

SPMA 2020 11

Compilation steps

I Partitioning and Mapping
partition the NN dataflow graph and map each partition to a CM core, respecting
interconnect constrains.

I Lowering
For each partition, produce the corresponding configurations for LCUs and DPUs
I DPU configuration: a set of instructions
I LCU configuration: a state machine

SPMA 2020 11

Data dependencies between cores

for w in 0..8:
v = a[w:w+3]
b[w] = mxv(v)




CONV1

. . .
()
a (size 10)

. . .
()
b (size 8)

for w in 0..6:
v = b[w:w+3]
c[w] = mxv(v)




CONV2

. . .
()
c (size 6)

Core 1 Core 2

read write read write

I Core 2 can only start executing after b[0], b[1], b[3] are written from Core 1.

SPMA 2020 12

LCU state machine

I snoops remote writes from other cores (or GCU)

I loads necessary data to crossbar

I triggers local computations
(only when dependencies are satisfied)

How do we configure it?

SPMA 2020 13

Modeling dependencies

I We need to model the dependencies of
the computation

Polyhedral model:

I allows reasoning about nested loops
computations that access
multi-dimensional arrays

I works well with NN operations

I We use ISL, which represents
computations as Presburger sets and
relations

for i1 . . .

for i2 . . .
. . .




Iterations I

 
Array O

for j1 . . .

for j2 . . .
. . .




Iterations J

Core 1 Core 2

W1 R2

ISL Example: read access relation

{ CONV_MXV[oh,ow] -> inp[id,ih,iw] :

0 <= oh < OH

and 0 <= ow < OW

and 0 <= id < D

and oh <= ih < oh + FH

and ow <= iw < ow + FW }

SPMA 2020 14

Modeling dependencies

I We need to model the dependencies of
the computation

Polyhedral model:

I allows reasoning about nested loops
computations that access
multi-dimensional arrays

I works well with NN operations

I We use ISL, which represents
computations as Presburger sets and
relations

for i1 . . .

for i2 . . .
. . .




Iterations I

 
Array O

for j1 . . .

for j2 . . .
. . .




Iterations J

Core 1 Core 2

W1 R2

ISL Example: read access relation

{ CONV_MXV[oh,ow] -> inp[id,ih,iw] :

0 <= oh < OH

and 0 <= ow < OW

and 0 <= id < D

and oh <= ih < oh + FH

and ow <= iw < ow + FW }

SPMA 2020 14

Modeling dependencies

I We need to model the dependencies of
the computation

Polyhedral model:

I allows reasoning about nested loops
computations that access
multi-dimensional arrays

I works well with NN operations

I We use ISL, which represents
computations as Presburger sets and
relations

for i1 . . .

for i2 . . .
. . .




Iterations I

 
Array O

for j1 . . .

for j2 . . .
. . .




Iterations J

Core 1 Core 2

W1 R2

ISL Example: read access relation

{ CONV_MXV[oh,ow] -> inp[id,ih,iw] :

0 <= oh < OH

and 0 <= ow < OW

and 0 <= id < D

and oh <= ih < oh + FH

and ow <= iw < ow + FW }

SPMA 2020 14

Modeling dependencies

I We need to model the dependencies of
the computation

Polyhedral model:

I allows reasoning about nested loops
computations that access
multi-dimensional arrays

I works well with NN operations

I We use ISL, which represents
computations as Presburger sets and
relations

for i1 . . .

for i2 . . .
. . .




Iterations I

 
Array O

for j1 . . .

for j2 . . .
. . .




Iterations J

Core 1 Core 2

W1 R2

ISL Example: read access relation

{ CONV_MXV[oh,ow] -> inp[id,ih,iw] :

0 <= oh < OH

and 0 <= ow < OW

and 0 <= id < D

and oh <= ih < oh + FH

and ow <= iw < ow + FW }

SPMA 2020 14

LCU state machine with polyhedral model

I we use ISL to compute relation S
I S maps observed writes in array O

to the maximum iteration in J that can
be executed.

I we use S to generate code for the LCU
state machine

for i1 . . .

for i2 . . .
. . .




Iterations I

 
Array O

for j1 . . .

for j2 . . .
. . .




Iterations J

Core 1 Core 2

W1 R2

(for more details please check our paper and https://github.com/IBM/cmnnc.)

SPMA 2020 15

https://github.com/IBM/cmnnc

LCU state machine with polyhedral model

I we use ISL to compute relation S
I S maps observed writes in array O

to the maximum iteration in J that can
be executed.

I we use S to generate code for the LCU
state machine

for i1 . . .

for i2 . . .
. . .




Iterations I

 
Array O

for j1 . . .

for j2 . . .
. . .




Iterations J

Core 1 Core 2

W1 R2

(for more details please check our paper and https://github.com/IBM/cmnnc.)

SPMA 2020 15

https://github.com/IBM/cmnnc

Conclusion

I A first step towards compiling NNs for a CM accelerator.

I SW / HW architecture

I tracking dependencies using polyhedral compilation

Open questions / challenges

I What is the HW/SW interface?

I What happens if the NN does not fit the accelerator?

I Quantization

I Breaking up operations that do not fit into a single CM core

Our prototype can be found at https://github.com/IBM/cmnnc.

SPMA 2020 16

https://github.com/IBM/cmnnc

Thank you!

Questions?

SPMA 2020 17

