Compiling Neural Networks for a Computational Memory Accelerator

Kornilios Kourtis ¹ Martino Dazzi ² Nikolas Ioannou ² Tobias Grosser ³ Abu Sebastian ² Evangelos Eleftheriou ²

¹ Independent ² IBM Research ³ ETH Zurich

April 27, 2020

- ▶ Traditional HW designs have reached their limits
- > Applications that require improved performance, turn to specialized HW

- Traditional HW designs have reached their limits
- > Applications that require improved performance, turn to specialized HW

A notable application domain where above applies is Neural Networks (NNs)

- widely used
- specialized (not general purpose) computations, expressed as dataflow graphs

- Traditional HW designs have reached their limits
- > Applications that require improved performance, turn to specialized HW

A notable application domain where above applies is Neural Networks (NNs)

- widely used
- specialized (not general purpose) computations, expressed as dataflow graphs

As a result, many attempts to accelerate their performance

► GPUs (e.g., NVIDIA's cuDNN), ASICs (e.g., Google TPU), FPGAs (e.g., Microsoft Brainwave)

- Traditional HW designs have reached their limits
- > Applications that require improved performance, turn to specialized HW

A notable application domain where above applies is Neural Networks (NNs)

- widely used
- specialized (not general purpose) computations, expressed as dataflow graphs

As a result, many attempts to accelerate their performance

- ► GPUs (e.g., NVIDIA's cuDNN), ASICs (e.g., Google TPU), FPGAs (e.g., Microsoft Brainwave)
- ► We use **Computational Memory**

Computational Memory

Exploit the physical attributes of the memory devices to perform computations at the place where data are stored.

(In contrast with traditional designs where computation and memory are separate.)

Computational memory (CM) crossbar

Basic unit is a memristive crossbar array that can:

- ► store a matrix M
- perform an analog matrix vector multiplication (M × v) operation (input: v, output: M × v)

Computational memory (CM) crossbar

Basic unit is a memristive crossbar array that can:

- store a matrix M
- perform an analog matrix vector multiplication (M × v) operation (input: v, output: M × v)

Benefits:

- M × v can be executed in a single step (while digital logic typically requires multiple steps)
- reduced communication

(main challenge for data-intensive workloads)

Computational memory (CM) crossbar

Basic unit is a memristive crossbar array that can:

- store a matrix M
- perform an analog matrix vector multiplication (M × v) operation (input: v, output: M × v)

Benefits:

- M × v can be executed in a single step (while digital logic typically requires multiple steps)
- reduced communication

(main challenge for data-intensive workloads)

Our CM accelerator comprises multiple cores with such crossbars

 Traditional accelerators use data parallelism

 Traditional accelerators use data parallelism NN dataflow graph

 Traditional accelerators use data parallelism NN dataflow graph

Data parallel execution on two cores

step 1:

$$I_1 \to C_1/L_1 \to L_1(I_1)$$
$$I_2 \to C_2/L_1 \to L_1(I_2)$$

 Traditional accelerators use data parallelism NN dataflow graph

Data parallel execution on two cores

step 1:

step 2:

$$l_1 \rightarrow C_1/L_1 \rightarrow L_1(l_1)$$

$$l_2 \rightarrow C_2/L_1 \rightarrow L_1(l_2)$$

$$L_1(l_1) \rightarrow C_1/L_2 \rightarrow L_2(L_1(l_1))$$

$$L_1(l_2) \rightarrow C_2/L_2 \rightarrow L_2(L_1(l_2))$$

- Traditional accelerators use data parallelism
- This will not work for the CM accelerator
 - built with PCM (or Flash)
 - reprogramming crossbars takes too long

NN dataflow graph

Data parallel execution on two cores

 $I_1 \longrightarrow C_1/L_1 \longrightarrow L_1(I_1)$ $I_2 \longrightarrow C_2/L_1 \longrightarrow L_1(I_2)$

step 2

step 1:

$$L_1(I_1) \rightarrow C_1/L_2 \rightarrow L_2(L_1(I_1))$$
$$L_1(I_2) \rightarrow C_2/L_2 \rightarrow L_2(L_1(I_2))$$

- Traditional accelerators use data parallelism
- This will not work for the CM accelerator
 - built with PCM (or Flash)
 - reprogramming crossbars takes too long
- Instead, we use pipeline parallelism

NN dataflow graph

- Traditional accelerators use data parallelism
- This will not work for the CM accelerator
 - built with PCM (or Flash)
 - reprogramming crossbars takes too long
- Instead, we use pipeline parallelism

NN dataflow graph

Pipeline execution on two cores

step 1:
$$I_1 \rightarrow C_1/L_1 \rightarrow C_2/L_2 \rightarrow L_2(L_1(I_1))$$

- Traditional accelerators use data parallelism
- This will not work for the CM accelerator
 - built with PCM (or Flash)
 - reprogramming crossbars takes too long

NN dataflow graph

Pipeline execution on two cores

step 1:
$$I_1 \rightarrow C_1/L_1 \rightarrow C_2/L_2 \rightarrow L_2(L_1(I_1))$$

step 2: $I_1 \rightarrow C_1/L_1 \rightarrow C_2/L_2 \rightarrow L_2(L_1(I_1))$

 Instead, we use pipeline parallelism

- Traditional accelerators use data parallelism
- This will not work for the CM accelerator
 - built with PCM (or Flash)
 - reprogramming crossbars takes too long

NN dataflow graph

Pipeline execution on two cores

step 1:
$$I_1 \rightarrow C_1/L_1 \rightarrow C_2/L_2 \rightarrow L_2(L_1(I_1))$$

step 2: $I_1 \rightarrow C_1/L_1 \rightarrow C_2/L_2 \rightarrow L_2(L_1(I_1))$

 Instead, we use pipeline parallelism

Existing compilers (e.g., Glow, TVM, XLA) offer no help for pipeline parallelism

Our goal is build a SW stack for a CM accelerator for NNs

► co-design SW with HW

Our goal is build a SW stack for a CM accelerator for NNs

- ► co-design SW with HW
- 1. Hardware: CM accelerator
 - Chip comprising multiple cores, each including a crossbar
 - ► (explicit) Dataflow engine

Our goal is build a SW stack for a CM accelerator for NNs

- co-design SW with HW
- 1. Hardware: CM accelerator
 - Chip comprising multiple cores, each including a crossbar
 - (explicit) Dataflow engine
- 2. Software: Compiler for mapping aribtrary NNs onto the chip
 - software architecture
 - implementing dependency control between the cores

Our goal is build a SW stack for a CM accelerator for NNs

- co-design SW with HW
- 1. Hardware: CM accelerator
 - Chip comprising multiple cores, each including a crossbar
 - (explicit) Dataflow engine
- 2. Software: Compiler for mapping aribtrary NNs onto the chip
 - software architecture
 - implementing dependency control between the cores

Scope:

- Convolutional NNs (CNNs)
- Inference, specifically on the edge

CM accelerator (chip)

- CM Cores
- ► GMEM: chip memory
- GCU: Global Control Unit orchestrates data transfers between external (e.g., host) memory and GMEM, as well as between GMEM and cores-local memory.
- interconnect network

CM accelerator

CM core

Interconnect

► XBAR: analog crossbar, M×V

- XBAR: analog crossbar, MxV
- DPU: digital processing unit

- ► XBAR: analog crossbar, M×V
- DPU: digital processing unit
- ► MEM: local memory

- ► XBAR: analog crossbar, M×V
- DPU: digital processing unit
- ► MEM: local memory
- ► LCU: local control unit

• LCU transfers data from MEM to XBAR, and initiates crossbar operation.

- LCU transfers data from MEM to XBAR, and initiates crossbar operation.
- XBAR output is made available to DPU, which executes its instructions.

CM core

- LCU transfers data from MEM to XBAR, and initiates crossbar operation.
- XBAR output is made available to DPU, which executes its instructions.
- DPU may load and store data to local memory

CM core

- LCU transfers data from MEM to XBAR, and initiates crossbar operation.
- XBAR output is made available to DPU, which executes its instructions.
- DPU may load and store data to local memory
- Data from local memory may be transferred to other cores via the interconnect.

CM core

- LCU transfers data from MEM to XBAR, and initiates crossbar operation.
- XBAR output is made available to DPU, which executes its instructions.
- DPU may load and store data to local memory
- Data from local memory may be transferred to other cores via the interconnect.
- Data via the interconnect arrive at local memory, and act as input to LCU's state machine (①) which may trigger the next operation (②).

CM core

Executing CNNs on the CM accelerator

- Convolutions are mapped to the crossbar's MxV operation
- ▶ Everything else (e.g., activation functions) is executed on the DPU
- CNN layers are assigned to CM cores, forming a pipeline

Executing CNNs on the CM accelerator

- Convolutions are mapped to the crossbar's MxV operation
- Everything else (e.g., activation functions) is executed on the DPU
- CNN layers are assigned to CM cores, forming a pipeline

Compiling NNs for the CM accelerator

Compilation:

- ► Input: an NN model (e.g., ONNX)
 - ▶ a dataflow graph of operators (e.g., convolution, ReLU, etc.)
 - values for the weights

► Output:

- configuration for the LCUs, GCU
- instructions for the DPU

Compilation steps

Partitioning and Mapping partition the NN dataflow graph and map each partition to a CM core, respecting interconnect constrains.

Partitioning and Mapping partition the NN dataflow graph and map each partition to a CM core, respecting interconnect constrains.

Lowering

For each partition, produce the corresponding configurations for LCUs and DPUs

- DPU configuration: a set of instructions
- LCU configuration: a state machine

Data dependencies between cores

Core 2 can only start executing after b[0], b[1], b[3] are written from Core 1.

LCU state machine

- snoops remote writes from other cores (or GCU)
- loads necessary data to crossbar
- triggers local computations (only when dependencies are satisfied)

How do we configure it?

 We need to model the dependencies of the computation

- We need to model the dependencies of the computation
- Polyhedral model:
 - allows reasoning about nested loops computations that access multi-dimensional arrays
 - works well with NN operations

- We need to model the dependencies of the computation
- Polyhedral model:
 - allows reasoning about nested loops computations that access multi-dimensional arrays
 - works well with NN operations
 - We use *ISL*, which represents computations as Presburger sets and relations

- We need to model the dependencies of the computation
- Polyhedral model:
 - allows reasoning about nested loops computations that access multi-dimensional arrays
 - works well with NN operations
 - We use *ISL*, which represents computations as Presburger sets and relations

ISL Example: read access relation

LCU state machine with polyhedral model

- \blacktriangleright we use ISL to compute relation ${\cal S}$
- S maps observed writes in array O to the maximum iteration in J that can be executed.
- we use S to generate code for the LCU state machine

LCU state machine with polyhedral model

- \blacktriangleright we use ISL to compute relation ${\cal S}$
- S maps observed writes in array O to the maximum iteration in J that can be executed.
- we use S to generate code for the LCU state machine

(for more details please check our paper and https://github.com/IBM/cmnnc.)

Conclusion

- ► A first step towards compiling NNs for a CM accelerator.
- ► SW / HW architecture
- tracking dependencies using polyhedral compilation

Open questions / challenges

- ► What is the HW/SW interface?
- What happens if the NN does not fit the accelerator?
- Quantization
- Breaking up operations that do not fit into a single CM core

Our prototype can be found at https://github.com/IBM/cmnnc.

Thank you! Questions?