Intelligent NIC Queue Management in the Dragonet
Network Stack

Kornilios Kourtis? Pravin Shinde!  Antoine Kaufmann?

Timothy Roscoe’

L ETH Zurich 2 IBM Research 3 University of Washington

TRIOS, Oct. 4, 2015

TRIOS, Oct. 4, 2015



NIC queues and network stacks

Packets OUT

filters

Packets IN NIC NET (1 core/queue) Apps

TRIOS, Oct. 4, 2015



NIC queues and network stacks

Note: Filter Match in this flow @

diagram means that Rx packets
match filters that assigns Rx queue

for these packels ®

Ordering rules between
SYN and 5-Tuple filters is
according to

SYNQF.SYNQFP setting

by the

Rx queue is defined by
the L2 Ethertype filter
Rx queue is defined
by the FCOE filters
Rx queue is defined
by the SYN filter

Rx queue is defined
uplefilters

Rx queue is defined by
the Flow Directorfilters

IftPacket match RSS criteria and RSS enabled) RSS Index = RSS queue
If(DCB Enabled) TC Index = RX User

Priority to TC Mapping
Queue num = TG Index | RSS Index

Rx Queue
Assigned

Figure 7-6 Rx Queuing Flow (Non-Virtualized)

TRIOS, Oct. 4, 2015



NIC queues and network stacks

Packets OUT

NIC NET (1 core/queue) Apps

Packets IN

TRIOS, Oct. 4, 2015



NIC queues and network stacks

Packets OUT

NIC NET (1 core/queue) Apps

Packets IN

> 1st approach: policy in the NIC
> Receive Side Scaling (RSS)

TRIOS, Oct. 4, 2015



NIC queues and network stacks

Packets OUT

NIC NET (1 core/queue) Apps

Packets IN

> 1st approach: policy in the NIC

» Receive Side Scaling (RSS)

— poor locality
TRIOS, Oct. 4, 2015



NIC queues and network stacks

Packets OUT

NN
N
<\ ‘
E Packets IN NIC NET (1 core/queue) Apps

NIC should steer packet in the core the application resides
(aRFS in Linux, ATR in i82599 driver, Affinity-Accept [Eurosys12])

TRIOS, Oct. 4, 2015



NIC queues and network stacks

Packets OUT

NIC NET (1 core/queue) Apps

Packets IN

Data-plane OSes: Arrakis [OSDI14a], IX [OSDI14b]:
» remove OS from the data path, demultiplexing on NIC

TRIOS, Oct. 4, 2015



NIC queues and network stacks

Packets OUT

NIC NET (1 core/queue) Apps

Packets IN

» how do you configure the NIC?

» what happens if you run out of filters? or queues?

TRIOS, Oct. 4, 2015



NIC queues and network stacks

Packets OUT

NIC NET (1 core/queue) Apps

Packets IN

» how do you configure the NIC?
» what happens if you run out of filters? or queues?

» what if you want a different policy (e.g., QoS)?
TRIOS, Oct. 4, 2015



Dragonet offers an alternative:
» NIC queue policy in the OS (not in the NIC or the driver)
» NIC model that strives to fully capture the NIC capabilities

» NIC-agnostic policies expressed as cost functions

TRIOS, Oct. 4, 2015



Dragonet offers an alternative:
» NIC queue policy in the OS (not in the NIC or the driver)
» NIC model that strives to fully capture the NIC capabilities

» NIC-agnostic policies expressed as cost functions

Talk outline

» Dragonet models the NIC as a dataflow graph
(called the Physical Resource Graph: PRG)

> Using the model to manage queues in Dragonet

» Evaluation

TRIOS, Oct. 4, 2015



NIC model

F-nodes:
> single input
» ports, each with (possibly) multiple outputs

» when computation is done, one port is activated
» subsequently, nodes connected to that port are activated

\ 3\,
5T(UDPv4, **—*:23) % TR F

-
5T(UDPv4,**—%:24) %/’E F

TRIOS, Oct. 4, 2015




NIC model

O-nodes:
» multiple inputs: {T, F} x operands

» can be short-circuited

\ 3\,
5T(UDPv4, **—*:23) % TR F

-
5T(UDPv4,**—%:24) %/’E F

TRIOS, Oct. 4, 2015




NIC model

Predicates:

» boolean expressions about the packet
(atoms of the form: k = v)

» each F-node port has a predicate

********* e
5T(UDPv4, **—*:23) % /'& F

1 / T
5T(UDPv4,**—%:24) %/’E F

TRIOS, Oct. 4, 2015




NIC model

Predicates:

» boolean expressions about the packet
(atoms of the form: k = v)

» each F-node port has a predicate

prot = UDPv4 A (dstPort = 23 V dstPort = 24)

|

iprot = UDPv4 A DstPort = 23, !

. E

5T(UDPv4,*:*—*:23) — / P

1 / T
5T(UDPv4,**—%:24) %/’E F

TRIOS, Oct. 4, 2015




Modeling NIC Configuration

» modern NICs offer rich configuration options

» drastically modify behaviour of NIC

Configuration nodes (C-Nodes)
> apply configuration value:
» remove C-node and its edges

» add a subgraph based on configuration value

TRIOS, Oct. 4, 2015



PRG configuration example
(i82599: SYN filter + 5-tuple filters)

CSynFilter

Qo0

1

CSynOut Q—

/ Q2

HWISTCPS true ?

S n
true / 4 false
false \l queues
C5TFilter

default

TRIOS, Oct. 4, 2015




PRG configuration example
(i82599: SYN filter + 5-tuple filters)

‘ CSynFilter = true ‘

CSynOut = Q1

/ VSynOut

\/ HWISTCPSyn

Pad

true

IQ 0

Q1

Q2

Q3

thue false
CSynFilter
false
C5TFilter

TRIOS, Oct. 4, 2015

queues

default




PRG configuration example
(i82599: SYN filter + 5-tuple filters)

CSynOut = Q1
1) N N .
’ CSynFilter = true ‘ Q_o .........
Q1
SynOut —— | T
/ Q2
HWISTCPSyn | [23)
S n
thue Bad v false ; :
CSynFilter
false ) queues
C5TFilter
default

true —— | oot
HWISTCPSyn

false

queues
default

C5TFilter

TRIOS, Oct. 4, 2015



PRG configuration example (cont'd)
(i82599: SYN filter + 5-tuple filters)

HWISTCPSyn

true

false

C5TFilter

queues

default

TRIOS, Oct. 4, 2015




PRG configuration example (cont'd)

(i82599: SYN filter + 5-tuple filters)

HWISTCPSyn

true

false

(IPV4/UDP,*,%,%,53) — Q2
(IPV4/UDP,*,%,%,67) — Q3

C5TFilter

queues

default

TRIOS, Oct. 4, 2015




PRG configuration example (cont'd)

(i82599: SYN filter + 5-tuple filters)

HWISTCPSyn

true

false

(IPV4/UDP,*,%,%,53) — Q2
(IPV4/UDP,*,%,%,67) — Q3

HWISTCPSyn

true

false

C5TFilter

queues
default :

™

5T(IPv4/UDP,* * *,53)

true

false

TRIOS, Oct. 4, 2015

™l st(pvauDp.* ,%,67)

true

false




Managing queues

Dragonet provides:
» NIC model (including configuration)

» boolean logic for reasoning

Example Policies:
1. balancing flows across queues (and subsequently cores)

2. providing performance isolation for high-priority flows

TRIOS, Oct. 4, 2015



Managing queues

Dragonet provides:
» NIC model (including configuration)

» boolean logic for reasoning

Policies are expressed as cost functions:
» input: How flows are mapped into queues (f — q)

» output: cost

Example Policies:
1. balancing flows across queues (and subsequently cores)

2. providing performance isolation for high-priority flows

TRIOS, Oct. 4, 2015



Specifying policies with cost functions

Load balancing:

» variance of number of flows per queue across queues

TRIOS, Oct. 4, 2015



Specifying policies with cost functions

Load balancing:

» variance of number of flows per queue across queues

QoS /Performance isolation:
> high-priority (HP) flows, best-effort (BE) flows
» HP flows get N queues, rest to BE flows

» Each class provides its own cost function for its flows
(e.g., balancing)

» reject all configurations that assign flows to queues of a different
class

» accepted configurations cost: ¢ = cgg + cyp

» 20 lines of Haskell code

TRIOS, Oct. 4, 2015



Computing flow — queue mapping

(cost function input)

5T:UDPv4
1.1.1.2:*—*:100

OR

5T:UDPv4 | T
1.1.1.1:*—*:100 |F

TRIOS, Oct. 4, 2015




Computing flow — queue mapping

(cost function input)

5T:UDPv4 T
1.1.1.2:*—*:100

OR %_>

5T:UDPv4 | T
1.1.1.1:*—*:100 |F

Flow: UDPv4 / 1.1.1.1:9001 — 1.1.1.42:100

predicate:
EtherType = IPv4 A IpProt = UDP
N srclp = 1.1.1.1 A srcPort = 9001
A dstlp = 1.1.1.42 A dstPort = 100

TRIOS, Oct. 4, 2015

10



Computing flow — queue mapping

(cost function input)

‘
7

5T:UDPv4 T
1.1.1.2:**:100 |F IR

bl (!

5T:UDPv4 T
1.1.1.1:*—*:100 |F

Flow: UDPv4 / 1.1.1.1:9001 — 1.1.1.42:100

predicate:
EtherType = IPv4 A IpProt = UDP
N srclp = 1.1.1.1 A srcPort = 9001
A dstlp = 1.1.1.42 A dstPort = 100

TRIOS, Oct. 4, 2015

10



Searching the configuration space

co(PRG, Fay) = arg min cost(qmap(PRG(c), Far))
ceC

Performance concerns:

» full search space is too big

Improving performance:
» reduce space (e.g., NIC-specific heuristics)

» incremental computations (flows added, removed)

TRIOS, Oct. 4, 2015 11



Greedy search algorithm

Input : The set of active flows Fgy

Input : A cost function cost

Output : A configuration ¢

c+— G // start with an empty configuration
F«0 // flows already considered
foreach f in F,; do

// CCr: A set of configuration changes on f

// that incrementally change ¢

CCr < oracleGetConfChanges(c, f)

F+—F+f // Add f to F
find cc € CCr that minimizes cost(gmap(PRG(c + cc), F))
c+c+cc // Apply change to configuration

TRIOS, Oct. 4, 2015

12



Greedy search algorithm

Input : The set of active flows Fgy

Input : A cost function cost

Output : A configuration ¢

c+— G // start with an empty configuration
F«0 // flows already considered
foreach f in F,; do

// CCr: A set of configuration changes on f

// that incrementally change ¢

CCf < oracleGetConfChanges(c, f)

F+—F+f // Add f to F
find cc € CCr that minimizes cost(gmap(PRG(c + cc), F))
c+c+cc // Apply change to configuration

*+ generate configurations from flows
*+ oracle: NIC-specific configuration generation

TRIOS, Oct. 4, 2015 12



Greedy search algorithm

Input : The set of active flows Fgy

Input : A cost function cost

Output : A configuration ¢

c+— G // start with an empty configuration
F«0 // flows already considered
foreach f in F,; do

// CCr: A set of configuration changes on f

// that incrementally change ¢

CCr < oracleGetConfChanges(c, f)

F+—F+f // Add f to F
find cc € CCr that minimizes cost(gmap(PRG(c + cc), F))
c+c+cc // Apply change to configuration

*+ generate configurations from flows
*+ oracle: NIC-specific configuration generation
*+ can be used incrementally, as flows arrive

TRIOS, Oct. 4, 2015 12



Greedy search algorithm

Input : The set of active flows Fgy

Input : A cost function cost

Output : A configuration ¢

c+— G // start with an empty configuration
F«0 // flows already considered
foreach f in F,; do

// CCr: A set of configuration changes on f

// that incrementally change ¢

CCr < oracleGetConfChanges(c, f)

F+—F+f // Add f to F
find cc € CCr that minimizes cost (gmap(PRG(c + cc), F))
c+c+cc // Apply change to configuration

*+ generate configurations from flows
*+ oracle: NIC-specific configuration generation
*+ can be used incrementally, as flows arrive

TRIOS, Oct. 4, 2015 12



Efficient flow-to-queue map computation

foreach f in F,; do

find cc € CCr that minimizes cost(qmap (PRG(c + cc), F))

naive:
» compute configuration (C) from configuration changes ([cc])
» apply C to PRG

> compute map

TRIOS, Oct. 4, 2015

13



Efficient flow-to-queue map computation

foreach f in F,; do

find cc € CCr that minimizes cost(qmap (PRG(c + cc), F))

incremental:

» maintain a partially configured PRG

v

compute flow-to-port mappings for each node

v

Applying a cc adds new nodes

> propagate mappings

TRIOS, Oct. 4, 2015



Evaluation

TRIOS, Oct. 4, 2015

14



Implementation + Experimental setup

Implementation
» Haskel + C
» SolarFlare SFC9020 (OpenOnload)
> Intel i82599 (DPDK)

Setup

> 10 client machines for load generation
> 1 server with 20 cores

» 10 cores to Dragonet, 10 cores to application,
» 10 queues.

TRIOS, Oct. 4, 2015 15



Experiment #1: basic comparison

» goal: to show that Dragonet has reasonable performance under the
same conditions

» ubench: UDP echo server
> 20 netperf clients, 16 packets in-flight
» Solarflare SFC9020 (vs: Linux stack, OpenOnload user-level stack)

» Dragonet: load balancing cost function, other: RSS

TRIOS, Oct. 4, 2015

16



echo server performance on the SFC9020 NIC

Mean latency(usecs)

Mean latency(usecs)

1600
1400
1200
1000

800

600/ -
400} -

200

(

1000
800
600
400
200

70 T T
60 - : :

T
5Ok oo ]
40} L=

20}
10 =

TPS(kTx/sec/client)

0

Linux  Onload  DNet Linux  Onload DNet
a) Latency, 1024 bytes (b) Throughput, 1024 bytes

50
40--
30}
20}

10

I

TPS(kTx/sec/client)

Linux _ Onload _ DNet Linux ~ Onload  DNet
(c) Latency, 64 bytes (d) Throughput, 64 bytes

TRIOS, Oct. 4, 2015 17



Experiment #2

Performance isolation/Qos

v

UDP memcached, memaslap clients

v

HP clients: 4 queues, BE clients: 6 queues

2 HP clients x16 flows, 18 BE clients x16 flows (320 flows in total)
(stable)

v

we show here results for the Intel 182599
(similar* results for Solarflare SFC9020 are in the paper)

v

TRIOS, Oct. 4, 2015

18



Experiment #2

Performance isolation/Qos

v

UDP memcached, memaslap clients

v

HP clients: 4 queues, BE clients: 6 queues

2 HP clients x16 flows, 18 BE clients x16 flows (320 flows in total)
(stable)

v

after 10secs, we start a new HP client that runs for 50secs

v

after new HP is done, we start new BE client

v

we show here results for the Intel 182599
(similar* results for Solarflare SFC9020 are in the paper)

v

TRIOS, Oct. 4, 2015

18



Performance Isolation

(Intel i82599)

¥ 600 2 80 1
b} o 70
g 500 T_) 60l
X 400} S 501
2 300|-- 48 a0}
2 5 X 30
200} -+ .
g : < 20l
100f----: 5 10l
© : . . 3 §
2 ol i i L ol ‘ ‘ ‘
Bal Isolated +BE +HP Bal Isolated +BE +HP
(e) Latency, 1024 bytes (f) Throughput, 1024 bytes
— — 80— . . .
g 500 S 7or .
8 400 {5 eoF
= S S0
2 300 » 40}
o} X
T 200 : = 30
= : < 20}
c B
= 0 1 ] ] ] — ! ! ! 1
Bal Isolated +BE +HP Bal Isolated +BE +HP

(g) Latency, 64 bytes

TRIOS, Oct. 4, 2015

(h) Throughput, 64 bytes

19



Search cost

(10 queues, 82599 PRG)

Naive Incremental
flows | full  |full |41 fl.|4+10 fl.|-1 fl. |-10 fl.
10 11ms|17ms|{2ms |22ms |[9pus |23.7ps
100 |1.2s |0.6s [9ms |94ms |74ps [117ps
250 |13s |4s 21 ms [219ms | 190 ps | 277 ps
500 |76s |17s |43 ms |484ms |382ps|548 s

TRIOS, Oct. 4, 2015

20



Conclusion

v

Dragonet offers a systematic approach to managing queues

v

Models NIC using a dataflow graph

v

Expresses policy via cost-functions

v

Incremental computations for improving performance

v

Code available at http://git.barrelfish.org/?p=dragonet

TRIOS, Oct. 4, 2015

21


http://git.barrelfish.org/?p=dragonet

Conclusion

v

Dragonet offers a systematic approach to managing queues

v

Models NIC using a dataflow graph

v

Expresses policy via cost-functions

v

Incremental computations for improving performance

v

Code available at http://git.barrelfish.org/?p=dragonet

Thank you!

v

Acknowledgements: ETH Barrelfish team!

TRIOS, Oct. 4, 2015

21


http://git.barrelfish.org/?p=dragonet

filter configuration for the Intel 182599 NIC

o 5-tuple filters: 128 filters that match: <protocol, source IP,
destination IP, source port, destination port>. Each field can
be masked.

* Flow director filters: Similar to 5-tuple filters. Increased flexibility at
the cost of additional memory and latency (stored in the receive-side
buffer space and implemented as a hash with linked list chains).

TRIOS, Oct. 4, 2015

22



filter configuration for the Intel 182599 NIC

[ 22

L2 d

(24

(24

5-tuple filters: 128 filters that match: <protocol, source IP,
destination IP, source port, destination port>. Each field can
be masked.

Flow director filters: Similar to 5-tuple filters. Increased flexibility at
the cost of additional memory and latency (stored in the receive-side
buffer space and implemented as a hash with linked list chains).

Flow director filters can operate in two modes: “perfect match”, which supports 8192
filters and matches on fields, and “signature”, which supports 32768 filters and the
matches on a hashed-based signature of the fields. Flow-director filters support global

fine-grained masking, enabling range matching.

Ethertype filters: these filters match packets based on the Ethertype field (although they
are not to be used for IP packets) and can be used for protocols such as Fibre Channel
over Ethernet (FCoE).

a SYN filter for directing TCP SYN packets to a given queue, for example to mitigate
SYN-flood attacks.

FCoE redirection filters for steering Fibre Channel over Ethernet packets based on FC

protocol fields. Originator Exchange ID or Responder Exchange ID
MAC address filters for steering packets into queue pools, typically assigned to virtual
machines.

Receive Side Scaling (RSS) where packet fields are used to generate a hash value used
to index a 128-entry table with 4-bit values indicating the destination queue.

TRIOS, Oct. 4, 2015

22



Dragonet in a nutshell

Logical Protocol Graph

Physical Resource Graph

dl.o\»*o»l -&-070=0

PRG.

W functj,
onflgu,.atlgs LPG

te
CO\ sta .
- Protet processine

TRIOS, Oct. 4, 2015



Dragonet in a nutshell

Logical Protocol Graph

Physical Resource Graph
o-0:0- -&-0-0=0
PRG. ‘%

W funege, y —

W fu
Conflguration LPG: o\ state
- P

’ PRG configuration ‘

Sy

Configured
PRG

TRIOS, Oct. 4, 2015



Dragonet in a nutshell

Physical Resource Graph

o' o

-0

PRG. ‘%
T W function,

W fy
conf’g“ratio,,

’ PRG configuration ‘

\ 4

Configured
PRG

Logical Protocol Graph

|-c—~0=0=0

O L

LPG:
tate |
" protoso) i
- P

Embedded graph:
- part of LPG in hw

TRIOS, Oct. 4, 2015 23



Dragonet in a nutshell

Logical Protocol Graph

Physical Resource Graph

PRG:
= hw funcs %
= dnct;
conflgurat?g: m Lpe: | state
Drot‘c:co pro cess‘“g

the rest of the talk:

- Dragonet model (graph building blocks)
- case-study: NIC queue management
- search for optimal NIC queue configuration

- evaluation
e Embedding "‘\:"R"g

Configured Embedded graph:
PRG - part of LPG in hw

TRIOS, Oct. 4, 2015 23



Performance isolation cost function

costFn isHp nHp(Qs queues fm
| not hpOK = CostReject 1
| not beOK = CostReject 1
| length hpFs == 0 = CostVal balBe
| length beFs == 0 = CostVal balHp
| otherwise = CostVal $ balHp + balBe

hpQs = take nHp(Qs queues -- HP queues
beQs = drop nHpQs queues -- BE queues
-- partition flows to HP/BE

(hpFs,beFs) = partition (isHp . fst) fm
—-- check if HP (BE) flows are assigned
-- only to HP (BE) queues

hpOK = and [q ‘elem‘ hpQs | (_,q)<-hpFs]
beOK = and [q ‘elem‘ beQs | (_,q)<-beFs]
-- compute costs of individual classes
CostVal balHp = balanceCost_ hpQs hpFs
CostVal balBe = balanceCost_ beQs beFs

TRIOS, Oct. 4, 2015 24



Incremental C-nodes

-

F

-

TRIOS, Oct. 4, 2015

OR

OR

OR

3 —(@

g

(@

25



Incremental C-nodes

OH can compute flows

-

F

-

TRIOS, Oct. 4, 2015

OR

OR

OR

3 —(@

g

(@

25



Incremental C-nodes

OH can compute flows

-

F

F

[

TRIOS, Oct. 4, 2015

OR

OR

OR

3 —(@

g

(@

25



Incremental C-nodes

OH can compute flows

-

F

F

[

TRIOS, Oct. 4, 2015

OR

OR

OR

3 —(@

g

(@

25



Incremental C-nodes

OH can compute flows

e

OR

OR

OR

TRIOS, Oct. 4, 2015

3 —(@

g

(@



Incremental C-nodes

OH can compute flows
OR

—

B—’
/, F 1{: ORig_'
OR:B_'

TRIOS, Oct. 4, 2015 25



Adding/removing flows

» adding flows: another step in the greedy search

» we remove flows lazily:

» each cc paired with a flow
» remove the flow, but keep cc (do not change configuration)
» oracle repurposes cc's generated nodes

TRIOS, Oct. 4, 2015

26



Configuration nodes
(C-nodes)

Conf

h e e O
xo> C 4:002

L ® [ I

(configure)

TRIOS, Oct. 4, 2015

hL @
X @
L ®

® O
e O
oY

27



Configuration nodes
(C-nodes)

Conf

h e e O
xo> C 4:002

L ® [ I

(configure)

TRIOS, Oct. 4, 2015

hL @
X @
L ®

Ny

No

® O
e O
oY

27



Configuration nodes
(C-nodes)

Conf

h e e O
xo> C 4:002

L ® [ I

(configure)

TRIOS, Oct. 4, 2015

Ny

h e e O
\. N>

X ® e O

_ verr
L@ oY

27



Configuration nodes
(C-nodes)

Conf

h e e O
xo> C 4:002

L ® [ I

(configure)

TRIOS, Oct. 4, 2015

L @ Ny Ny ® O

X 00—\, ¢/ ,0® O
A .4:. v

27



Managing NIC queues

» hardware receive filters (packets — Rx queue)

» Receive Side Scaling (RSS): hash-based load balancing

» NIC-specific hardware filters (e.g., 5-tuples, TCP SYN packets)
» Linux support

» RSS (does not consider application locality)

> Accelerated Receive Flow Steering

> aims to steer packets to core that application resides
> maintains flow information

» calls the NIC driver to steer flows

> inlined in the protocol implementation

> Application Targeted Receive

> implemented in the driver
> driver samples transmit packets
> uses device-specific filters to steer packets

TRIOS, Oct. 4, 2015 28



Adding an HP client when using 64 byte requests (i82599)

> we instruct clients to provide results every one second
(minimum possible value).

Stable Stable Stable Stable
|H Hp) 00 @y &8 +HF’| |§‘§ HP) B0 gy &9 "HP|
700 =
600 3
)
7 50 3
S 400 2
z e
< 300 )
@
200 ‘ ! ‘ o
100 L L L '_
70 75 80 85 90
Time(sec) Time(sec)
(i) Latency (j) Throughput

TRIOS, Oct. 4, 2015 29



