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NIC queues and network stacks
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NIC queues and network stacks

Note: Filter Match in this flow @

diagram means that Rx packets
match filters that assigns Rx queue

for these packels ®
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Figure 7-6 Rx Queuing Flow (Non-Virtualized)
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NIC queues and network stacks

Packets OUT

NIC NET (1 core/queue) Apps

Packets IN

> 1st approach: policy in the NIC
> Receive Side Scaling (RSS)

TRIOS, Oct. 4, 2015



NIC queues and network stacks

Packets OUT

NIC NET (1 core/queue) Apps

Packets IN

> 1st approach: policy in the NIC

» Receive Side Scaling (RSS)

— poor locality
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NIC queues and network stacks

Packets OUT

NN
N
<\ ‘
E Packets IN NIC NET (1 core/queue) Apps

NIC should steer packet in the core the application resides
(aRFS in Linux, ATR in i82599 driver, Affinity-Accept [Eurosys12])
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NIC queues and network stacks

Packets OUT

NIC NET (1 core/queue) Apps

Packets IN

Data-plane OSes: Arrakis [OSDI14a], IX [OSDI14b]:
» remove OS from the data path, demultiplexing on NIC
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NIC queues and network stacks

Packets OUT

NIC NET (1 core/queue) Apps

Packets IN

» how do you configure the NIC?

» what happens if you run out of filters? or queues?
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NIC queues and network stacks

Packets OUT

NIC NET (1 core/queue) Apps

Packets IN

» how do you configure the NIC?
» what happens if you run out of filters? or queues?

» what if you want a different policy (e.g., QoS)?
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Dragonet offers an alternative:
» NIC queue policy in the OS (not in the NIC or the driver)
» NIC model that strives to fully capture the NIC capabilities

» NIC-agnostic policies expressed as cost functions
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Dragonet offers an alternative:
» NIC queue policy in the OS (not in the NIC or the driver)
» NIC model that strives to fully capture the NIC capabilities

» NIC-agnostic policies expressed as cost functions

Talk outline

» Dragonet models the NIC as a dataflow graph
(called the Physical Resource Graph: PRG)

> Using the model to manage queues in Dragonet

» Evaluation
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NIC model

F-nodes:
> single input
» ports, each with (possibly) multiple outputs

» when computation is done, one port is activated
» subsequently, nodes connected to that port are activated

\ 3\,
5T(UDPv4, **—*:23) % TR F

-
5T(UDPv4,**—%:24) %/’E F
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NIC model

O-nodes:
» multiple inputs: {T, F} x operands

» can be short-circuited

\ 3\,
5T(UDPv4, **—*:23) % TR F

-
5T(UDPv4,**—%:24) %/’E F
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NIC model

Predicates:

» boolean expressions about the packet
(atoms of the form: k = v)

» each F-node port has a predicate

********* e
5T(UDPv4, **—*:23) % /'& F

1 / T
5T(UDPv4,**—%:24) %/’E F
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NIC model

Predicates:

» boolean expressions about the packet
(atoms of the form: k = v)

» each F-node port has a predicate

prot = UDPv4 A (dstPort = 23 V dstPort = 24)

|

iprot = UDPv4 A DstPort = 23, !

. E

5T(UDPv4,*:*—*:23) — / P

1 / T
5T(UDPv4,**—%:24) %/’E F
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Modeling NIC Configuration

» modern NICs offer rich configuration options

» drastically modify behaviour of NIC

Configuration nodes (C-Nodes)
> apply configuration value:
» remove C-node and its edges

» add a subgraph based on configuration value
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PRG configuration example
(i82599: SYN filter + 5-tuple filters)

CSynFilter

Qo0

1

CSynOut Q—

/ Q2

HWISTCPS true ?

S n
true / 4 false
false \l queues
C5TFilter

default

TRIOS, Oct. 4, 2015




PRG configuration example
(i82599: SYN filter + 5-tuple filters)

‘ CSynFilter = true ‘

CSynOut = Q1

/ VSynOut

\/ HWISTCPSyn

Pad

true

IQ 0

Q1

Q2

Q3

thue false
CSynFilter
false
C5TFilter
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PRG configuration example
(i82599: SYN filter + 5-tuple filters)

CSynOut = Q1
1) N N .
’ CSynFilter = true ‘ Q_o .........
Q1
SynOut —— | T
/ Q2
HWISTCPSyn | [23)
S n
thue Bad v false ; :
CSynFilter
false ) queues
C5TFilter
default

true —— | oot
HWISTCPSyn

false

queues
default

C5TFilter
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PRG configuration example (cont'd)
(i82599: SYN filter + 5-tuple filters)

HWISTCPSyn

true

false

C5TFilter

queues

default
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PRG configuration example (cont'd)

(i82599: SYN filter + 5-tuple filters)

HWISTCPSyn

true

false

(IPV4/UDP,*,%,%,53) — Q2
(IPV4/UDP,*,%,%,67) — Q3

C5TFilter

queues

default
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PRG configuration example (cont'd)

(i82599: SYN filter + 5-tuple filters)

HWISTCPSyn

true

false

(IPV4/UDP,*,%,%,53) — Q2
(IPV4/UDP,*,%,%,67) — Q3

HWISTCPSyn

true

false

C5TFilter

queues
default :

™

5T(IPv4/UDP,* * *,53)

true

false
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Managing queues

Dragonet provides:
» NIC model (including configuration)

» boolean logic for reasoning

Example Policies:
1. balancing flows across queues (and subsequently cores)

2. providing performance isolation for high-priority flows
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Managing queues

Dragonet provides:
» NIC model (including configuration)

» boolean logic for reasoning

Policies are expressed as cost functions:
» input: How flows are mapped into queues (f — q)

» output: cost

Example Policies:
1. balancing flows across queues (and subsequently cores)

2. providing performance isolation for high-priority flows
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Specifying policies with cost functions

Load balancing:

» variance of number of flows per queue across queues
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Specifying policies with cost functions

Load balancing:

» variance of number of flows per queue across queues

QoS /Performance isolation:
> high-priority (HP) flows, best-effort (BE) flows
» HP flows get N queues, rest to BE flows

» Each class provides its own cost function for its flows
(e.g., balancing)

» reject all configurations that assign flows to queues of a different
class

» accepted configurations cost: ¢ = cgg + cyp

» 20 lines of Haskell code
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Computing flow — queue mapping

(cost function input)

5T:UDPv4
1.1.1.2:*—*:100

OR

5T:UDPv4 | T
1.1.1.1:*—*:100 |F
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Computing flow — queue mapping

(cost function input)

5T:UDPv4 T
1.1.1.2:*—*:100

OR %_>

5T:UDPv4 | T
1.1.1.1:*—*:100 |F

Flow: UDPv4 / 1.1.1.1:9001 — 1.1.1.42:100

predicate:
EtherType = IPv4 A IpProt = UDP
N srclp = 1.1.1.1 A srcPort = 9001
A dstlp = 1.1.1.42 A dstPort = 100
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Computing flow — queue mapping

(cost function input)

‘
7

5T:UDPv4 T
1.1.1.2:**:100 |F IR

bl (!

5T:UDPv4 T
1.1.1.1:*—*:100 |F

Flow: UDPv4 / 1.1.1.1:9001 — 1.1.1.42:100

predicate:
EtherType = IPv4 A IpProt = UDP
N srclp = 1.1.1.1 A srcPort = 9001
A dstlp = 1.1.1.42 A dstPort = 100
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Searching the configuration space

co(PRG, Fay) = arg min cost(qmap(PRG(c), Far))
ceC

Performance concerns:

» full search space is too big

Improving performance:
» reduce space (e.g., NIC-specific heuristics)

» incremental computations (flows added, removed)
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Greedy search algorithm

Input : The set of active flows Fgy

Input : A cost function cost

Output : A configuration ¢

c+— G // start with an empty configuration
F«0 // flows already considered
foreach f in F,; do

// CCr: A set of configuration changes on f

// that incrementally change ¢

CCr < oracleGetConfChanges(c, f)

F+—F+f // Add f to F
find cc € CCr that minimizes cost(gmap(PRG(c + cc), F))
c+c+cc // Apply change to configuration

TRIOS, Oct. 4, 2015
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Greedy search algorithm

Input : The set of active flows Fgy

Input : A cost function cost

Output : A configuration ¢

c+— G // start with an empty configuration
F«0 // flows already considered
foreach f in F,; do

// CCr: A set of configuration changes on f

// that incrementally change ¢

CCf < oracleGetConfChanges(c, f)

F+—F+f // Add f to F
find cc € CCr that minimizes cost(gmap(PRG(c + cc), F))
c+c+cc // Apply change to configuration

*+ generate configurations from flows
*+ oracle: NIC-specific configuration generation

TRIOS, Oct. 4, 2015 12



Greedy search algorithm

Input : The set of active flows Fgy

Input : A cost function cost

Output : A configuration ¢

c+— G // start with an empty configuration
F«0 // flows already considered
foreach f in F,; do

// CCr: A set of configuration changes on f

// that incrementally change ¢

CCr < oracleGetConfChanges(c, f)

F+—F+f // Add f to F
find cc € CCr that minimizes cost(gmap(PRG(c + cc), F))
c+c+cc // Apply change to configuration

*+ generate configurations from flows
*+ oracle: NIC-specific configuration generation
*+ can be used incrementally, as flows arrive

TRIOS, Oct. 4, 2015 12



Greedy search algorithm

Input : The set of active flows Fgy

Input : A cost function cost

Output : A configuration ¢

c+— G // start with an empty configuration
F«0 // flows already considered
foreach f in F,; do

// CCr: A set of configuration changes on f

// that incrementally change ¢

CCr < oracleGetConfChanges(c, f)

F+—F+f // Add f to F
find cc € CCr that minimizes cost (gmap(PRG(c + cc), F))
c+c+cc // Apply change to configuration

*+ generate configurations from flows
*+ oracle: NIC-specific configuration generation
*+ can be used incrementally, as flows arrive

TRIOS, Oct. 4, 2015 12



Efficient flow-to-queue map computation

foreach f in F,; do

find cc € CCr that minimizes cost(qmap (PRG(c + cc), F))

naive:
» compute configuration (C) from configuration changes ([cc])
» apply C to PRG

> compute map

TRIOS, Oct. 4, 2015
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Efficient flow-to-queue map computation

foreach f in F,; do

find cc € CCr that minimizes cost(qmap (PRG(c + cc), F))

incremental:

» maintain a partially configured PRG

v

compute flow-to-port mappings for each node

v

Applying a cc adds new nodes

> propagate mappings
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Evaluation
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Implementation + Experimental setup

Implementation
» Haskel + C
» SolarFlare SFC9020 (OpenOnload)
> Intel i82599 (DPDK)

Setup

> 10 client machines for load generation
> 1 server with 20 cores

» 10 cores to Dragonet, 10 cores to application,
» 10 queues.

TRIOS, Oct. 4, 2015 15



Experiment #1: basic comparison

» goal: to show that Dragonet has reasonable performance under the
same conditions

» ubench: UDP echo server
> 20 netperf clients, 16 packets in-flight
» Solarflare SFC9020 (vs: Linux stack, OpenOnload user-level stack)

» Dragonet: load balancing cost function, other: RSS

TRIOS, Oct. 4, 2015
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echo server performance on the SFC9020 NIC
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Experiment #2

Performance isolation/Qos

v

UDP memcached, memaslap clients

v

HP clients: 4 queues, BE clients: 6 queues

2 HP clients x16 flows, 18 BE clients x16 flows (320 flows in total)
(stable)

v

we show here results for the Intel 182599
(similar* results for Solarflare SFC9020 are in the paper)

v
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Experiment #2

Performance isolation/Qos

v

UDP memcached, memaslap clients

v

HP clients: 4 queues, BE clients: 6 queues

2 HP clients x16 flows, 18 BE clients x16 flows (320 flows in total)
(stable)

v

after 10secs, we start a new HP client that runs for 50secs

v

after new HP is done, we start new BE client

v

we show here results for the Intel 182599
(similar* results for Solarflare SFC9020 are in the paper)

v

TRIOS, Oct. 4, 2015
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Performance Isolation

(Intel i82599)
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Search cost

(10 queues, 82599 PRG)

Naive Incremental
flows | full  |full |41 fl.|4+10 fl.|-1 fl. |-10 fl.
10 11ms|17ms|{2ms |22ms |[9pus |23.7ps
100 |1.2s |0.6s [9ms |94ms |74ps [117ps
250 |13s |4s 21 ms [219ms | 190 ps | 277 ps
500 |76s |17s |43 ms |484ms |382ps|548 s

TRIOS, Oct. 4, 2015
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Conclusion

v

Dragonet offers a systematic approach to managing queues

v

Models NIC using a dataflow graph

v

Expresses policy via cost-functions

v

Incremental computations for improving performance

v

Code available at http://git.barrelfish.org/?p=dragonet

TRIOS, Oct. 4, 2015
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Conclusion

v

Dragonet offers a systematic approach to managing queues

v

Models NIC using a dataflow graph

v

Expresses policy via cost-functions

v

Incremental computations for improving performance

v

Code available at http://git.barrelfish.org/?p=dragonet

Thank you!

v

Acknowledgements: ETH Barrelfish team!
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filter configuration for the Intel 182599 NIC

o 5-tuple filters: 128 filters that match: <protocol, source IP,
destination IP, source port, destination port>. Each field can
be masked.

* Flow director filters: Similar to 5-tuple filters. Increased flexibility at
the cost of additional memory and latency (stored in the receive-side
buffer space and implemented as a hash with linked list chains).

TRIOS, Oct. 4, 2015
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filter configuration for the Intel 182599 NIC

[ 22

L2 d

(24

(24

5-tuple filters: 128 filters that match: <protocol, source IP,
destination IP, source port, destination port>. Each field can
be masked.

Flow director filters: Similar to 5-tuple filters. Increased flexibility at
the cost of additional memory and latency (stored in the receive-side
buffer space and implemented as a hash with linked list chains).

Flow director filters can operate in two modes: “perfect match”, which supports 8192
filters and matches on fields, and “signature”, which supports 32768 filters and the
matches on a hashed-based signature of the fields. Flow-director filters support global

fine-grained masking, enabling range matching.

Ethertype filters: these filters match packets based on the Ethertype field (although they
are not to be used for IP packets) and can be used for protocols such as Fibre Channel
over Ethernet (FCoE).

a SYN filter for directing TCP SYN packets to a given queue, for example to mitigate
SYN-flood attacks.

FCoE redirection filters for steering Fibre Channel over Ethernet packets based on FC

protocol fields. Originator Exchange ID or Responder Exchange ID
MAC address filters for steering packets into queue pools, typically assigned to virtual
machines.

Receive Side Scaling (RSS) where packet fields are used to generate a hash value used
to index a 128-entry table with 4-bit values indicating the destination queue.

TRIOS, Oct. 4, 2015
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Dragonet in a nutshell

Logical Protocol Graph

Physical Resource Graph

dl.o\»*o»l -&-070=0

PRG.

W functj,
onflgu,.atlgs LPG

te
CO\ sta .
- Protet processine
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Dragonet in a nutshell

Logical Protocol Graph

Physical Resource Graph
o-0:0- -&-0-0=0
PRG. ‘%

W funege, y —

W fu
Conflguration LPG: o\ state
- P

’ PRG configuration ‘

Sy

Configured
PRG
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Dragonet in a nutshell

Physical Resource Graph

o' o

-0

PRG. ‘%
T W function,

W fy
conf’g“ratio,,

’ PRG configuration ‘

\ 4

Configured
PRG

Logical Protocol Graph

|-c—~0=0=0

O L

LPG:
tate |
" protoso) i
- P

Embedded graph:
- part of LPG in hw
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Dragonet in a nutshell

Logical Protocol Graph

Physical Resource Graph

PRG:
= hw funcs %
= dnct;
conflgurat?g: m Lpe: | state
Drot‘c:co pro cess‘“g

the rest of the talk:

- Dragonet model (graph building blocks)
- case-study: NIC queue management
- search for optimal NIC queue configuration

- evaluation
e Embedding "‘\:"R"g

Configured Embedded graph:
PRG - part of LPG in hw
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Performance isolation cost function

costFn isHp nHp(Qs queues fm
| not hpOK = CostReject 1
| not beOK = CostReject 1
| length hpFs == 0 = CostVal balBe
| length beFs == 0 = CostVal balHp
| otherwise = CostVal $ balHp + balBe

hpQs = take nHp(Qs queues -- HP queues
beQs = drop nHpQs queues -- BE queues
-- partition flows to HP/BE

(hpFs,beFs) = partition (isHp . fst) fm
—-- check if HP (BE) flows are assigned
-- only to HP (BE) queues

hpOK = and [q ‘elem‘ hpQs | (_,q)<-hpFs]
beOK = and [q ‘elem‘ beQs | (_,q)<-beFs]
-- compute costs of individual classes
CostVal balHp = balanceCost_ hpQs hpFs
CostVal balBe = balanceCost_ beQs beFs
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Incremental C-nodes
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Incremental C-nodes

OH can compute flows
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Incremental C-nodes

OH can compute flows
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Incremental C-nodes

OH can compute flows

-
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Incremental C-nodes

OH can compute flows

e

OR

OR

OR
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Incremental C-nodes

OH can compute flows
OR

—

B—’
/, F 1{: ORig_'
OR:B_'
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Adding/removing flows

» adding flows: another step in the greedy search

» we remove flows lazily:

» each cc paired with a flow
» remove the flow, but keep cc (do not change configuration)
» oracle repurposes cc's generated nodes

TRIOS, Oct. 4, 2015
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Configuration nodes
(C-nodes)

Conf

h e e O
xo> C 4:002

L ® [ I

(configure)
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Configuration nodes
(C-nodes)

Conf

h e e O
xo> C 4:002

L ® [ I

(configure)
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Configuration nodes
(C-nodes)

Conf

h e e O
xo> C 4:002

L ® [ I

(configure)
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Configuration nodes
(C-nodes)

Conf

h e e O
xo> C 4:002

L ® [ I

(configure)
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Managing NIC queues

» hardware receive filters (packets — Rx queue)

» Receive Side Scaling (RSS): hash-based load balancing

» NIC-specific hardware filters (e.g., 5-tuples, TCP SYN packets)
» Linux support

» RSS (does not consider application locality)

> Accelerated Receive Flow Steering

> aims to steer packets to core that application resides
> maintains flow information

» calls the NIC driver to steer flows

> inlined in the protocol implementation

> Application Targeted Receive

> implemented in the driver
> driver samples transmit packets
> uses device-specific filters to steer packets
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Adding an HP client when using 64 byte requests (i82599)

> we instruct clients to provide results every one second
(minimum possible value).

Stable Stable Stable Stable
|H Hp) 00 @y &8 +HF’| |§‘§ HP) B0 gy &9 "HP|
700 =
600 3
)
7 50 3
S 400 2
z e
< 300 )
@
200 ‘ ! ‘ o
100 L L L '_
70 75 80 85 90
Time(sec) Time(sec)
(i) Latency (j) Throughput
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