
Intelligent NIC Queue Management in the Dragonet Network Stack

Kornilios Kourtis† Pravin Shinde‡ Antoine Kaufmann§ Timothy Roscoe‡

†IBM Research∗ ‡ETH Zurich §University of Washington∗

Abstract
Recent network adaptors are equipped with multiple trans-
mit and receive hardware queues combined with a wide
variety of filtering and demultiplexing functionality. Con-
temporary network stacks depend on this functionality for
high performance and strong isolation, but face a chal-
lenge: how to allocate a limited set of queues and filters
to the flows of a given workload. The problem is made
worse by the great variation in filter semantics between
different adaptors.

In this paper we propose a solution to this problem
using the Dragonet network stack. Dragonet takes a speci-
fication of the networking hardware functionality, and ap-
plies OS policies at runtime to allocate queues and filters
to applications, deriving performance benefits in a way
not possible with conventional OS protocol stacks. We de-
scribe a prototype of Dragonet which can use both Intel’s
DataPlane Development Kit and Solarflare’s OpenOnload
protocol framework, and present experimental results us-
ing microbenchmarks and memcached that show how
Dragonet’s queue management can be used for achieving
high scalability and quality of service (QoS) guarantees
as network flows come and go, independently of NIC
hardware.

1 Introduction

The network bandwidth and latency demands of modern
server applications impose two requirements on host net-
work stacks: maximizing the system’s raw performance,
and efficiently sharing resources for which multiple appli-
cations and network flows compete.

The first ensures that each application can use the hard-
ware (and perhaps more importantly the energy to drive
the hardware) at its full potential. This alone, however, is
not enough: consolidating multiple services on machines
is also required to fully utilize the hardware. Given the

∗Work completed while at ETH Zurich

diversity and fluidity of modern workloads, dynamically
sharing hardware resources offers a way to maximize
utilization and avoid overcommitting hardware.

Much recent work addresses the problem of max-
imizing raw performance in host networking stacks
[7, 13, 14, 20]. This is generally achieved by ensuring
that each packet is processed on a single core, distributing
data structures to avoid contention, and eliminating OS
overheads by techniques such as user-space networking
and batching. Taking these techniques to their logical
conclusion, other work proposes fully decoupling the data
plane from the control plane at the OS level [1, 21]. All
these approaches depend heavily on the use of NIC hard-
ware queues to achieve isolation and high performance.

Efficiently allocating NIC queues across the network
flows in a system is critical to performance and can enable
higher degrees of service consolidation. In contemporary
systems, however, there is no obvious, rigorous way to
formulate, let alone solve, this problem: every NIC is
different, and offers not merely different numbers of fil-
ters but different semantics and limits for the filters and
directors used to demultiplex incoming packets [26].

We address this challenge with Dragonet, a network
stack that allocates NIC queues to flows in a variety of dif-
ferent NIC implementations based on generic OS policies.
We argue that the right place to implement this allocation
decision is not in the NIC driver (as happens today), and
certainly not in the NIC itself. Instead, NIC queue allo-
cation should be performed in a hardware-independent
way by the OS, and specifically by the network stack.
Hence, Dragonet explicitly controls how NIC queues are
allocated to network flows.

We do not aim to provide a solution for a specific
queue allocation problem. These problems can change
significantly over time as application demands and NIC
hardware change. Instead, we are interested in creating
the proper abstractions to formulate the problem, and
building a network stack that can systemically solve it.

1

Our contributions are as follows:
• We present a new model for NIC hardware that rep-

resents the capabilities of the NIC along with its
configuration space for steering packets into queues.
Our models are reactive dataflow graphs called Phys-
ical Resource Graphs (PRGs); nodes are annotated
with semantic information about how the NIC oper-
ates.
• We demonstrate the value of the model in Dragonet

(§3), a network stack that selects NIC configura-
tions that satisfy generic OS policies. Instead of
hard-coding policies, we express them using cost
functions. Using the PRG abstraction and informa-
tion about the network state, Dragonet explores the
NIC’s configuration space for a configuration that
minimizes the cost function.
• We evaluate Dragonet in §4 using a UDP echo server

and memcached, two modern, high-performance,
NICs (the Intel i82599 and the Solarflare SFC9020),
and two policies: load balancing and performance
isolation for a set of given network flows.
• We show that proper NIC queues allocation signif-

icantly improves performance and enables perfor-
mance isolation. Furthermore, we show that Drag-
onet finds good NIC configuration solutions with
reasonable overhead.

We start with a discussion of our motivation and back-
ground for this work.

2 Motivation and Background

The work in this paper is motivated by combined trends
in processors (and associated system software) and net-
working hardware.

2.1 Network hardware
We make a twofold argument. Firstly, exploiting NIC
hardware queues is essential for keeping up with increas-
ing network speeds in the host network stack. Secondly,
doing so requires dealing with complex and hardware-
specific NIC configuration.

The speed of networking hardware continues to in-
crease; 40Gb/s adaptors (both Ethernet and Infiniband)
are becoming commoditized in the datacenter market, and
100Gb/s Ethernet adaptors are available. The data rates
that computers (at least when viewed as components of a
datacenter) are expected to source and sink are growing.

At the same time, the speed of individual cores is not
increasing, due to physical limits on clock frequency,
supply voltage, and heat dissipation. As with other areas
of data processing, the only solution to handling higher
network data rates in end systems is via parallelism across
cores, and this requires multiplexing and demultiplexing

flows in hardware, before they reach software running on
general-purpose cores.

Fortunately, all modern NICs support multiple send and
receive queues, and include filtering hardware which can
demultiplex incoming packets to different queues, typi-
cally ensuring that all packets of the same “flow” (suitably
defined) end up in the same serial queue.

Multiple send and receive queues in NICs predate the
multicore era: their original purpose was to reduce CPU
load by offloading packet demultiplexing. This also had
the useful property of providing a mechanism for perfor-
mance isolation between flows without expensive support
from the CPU scheduler. However, modern NIC func-
tionality is highly sophisticated, and varies considerably
between different vendors and different price points.

In this paper we also focus only on the receive path,
where received packets are demultiplexed by hardware
and directed to the appropriate receive queue. This is
not to dismiss the transmit case, which can be surpris-
ingly complex when quality-of-service concerns are taken
into account, but managing receive queues as a system
resource is a sufficiently complex problem in itself. More-
over, in the receive case the packet steering is performed
by the NIC, rendering attempts to utilize NIC queues
more challenging than on the send side.

2.1.1 Configuring queue filters in modern NICs

The primary challenge in exploiting NIC queues is con-
figuration complexity: NICs offer a rich and diverse set
of programmable filters for steering packets to hardware
queues. To show this, we provide a simplified discussion
of filters in the network adaptors we use in this paper.

The Intel i82599 [11] exports 128 send and 128 receive
queues and supports:

1. 5-tuple filters: 128 filters that match packets
based on five fields: <protocol, source IP,

destination IP, source port, destination

port>, each of which can be masked so that it is not
considered in packet matching.

2. Flow director filters: These are similar to 5-tuple
filters, but offer increased flexibility at the cost
of additional memory and latency (they are stored
in the receive-side buffer space and implemented
as a hash table with linked list chains). Flow di-
rector filters can operate in two modes: “perfect
match”, which supports 8192 filters and matches
on fields, and “signature”, which supports 32768
filters and the matches on a hash-based signature
of the fields. Flow-director filters support global
fine-grained masking, enabling range matching.

3. Ethertype filters: these filters match packets based
on the Ethertype field (although they are not to be
used for IP packets) and can be used for protocols

2

such as Fibre Channel over Ethernet (FCoE).
4. a SYN filter for directing TCP SYN packets to a given

queue. This can be used, for example, to handle
denial-of-service (DoS) attacks.

5. FCoE redirection filters for steering Fibre Channel
over Ethernet packets based on FC protocol fields.

6. MAC address filters for steering packets into queue
pools, typically assigned to virtual machines.

Finally, the i82599 also supports Receive Side Scaling
[8, 18] in which packet fields are used to generate a hash
value used to index a 128-entry table with 4-bit values
indicating the destination queue.

In contrast, the Solarflare SFC9020 [28] NIC supports
1024 send and 1024 receive queues, 512 filters based
on MAC destination and two kinds of 8192 filters each
for TCP and UDP: a full matching in which the entire
5-tuple is considered, and a wildcard mode in which only
destination IP and port are used. If a packet is matched
by multiple filters, the more specific filter is selected.
Moreover, each filter can use RSS to distribute packets
across multiple queues (two different hash functions are
supported).

2.2 System software

We now examine the evolution of network stacks and
make two observations: modern network stacks indeed
depend increasingly on NIC hardware to achieve good
performance, but there is currently no solution that pro-
vides support for generic OS policies and deals with the
complexity realities of modern NIC hardware.

2.2.1 RSS: Queue allocation in the NIC

Modern network stacks (and commodity OSes in general)
have evolved incrementally from designs based on simple
NICs feeding unicore CPUs. As multicore machines be-
came dominant and the scalability of the software stack
became a serious concern, significant efforts were made
to adapt these designs to exploit multiple cores.

However, the difficulty of adapting such OSes while
maintaining compatibility with existing hardware has lim-
ited the extent to which such stacks can evolve. This in
turn has strongly influenced hardware trends.

For example, the most common method for utilizing
NIC receive queues is Receive-Side Scaling (RSS) [8,18].
The main goal of RSS is to remove the contention point
of a single DMA queue and allow the network stack to
execute independently on each core. With RSS, the NIC
distributes incoming packets to different queues so that
they can be processed by different cores. Packets are
steered to queues based on a hash function applied to
protocol fields (e.g., on a 4-tuple of IP addresses and TCP
ports). Assuming the hash function distributes packets

evenly among queues, the protocol processing load is
balanced among cores.

The key drawback of RSS, as with any other hard-
coding of policy into NIC hardware, is that the OS has
little or no control over how queues are allocated to flows.

For example, RSS does not consider application lo-
cality. Maximizing network stack performance requires
packet processing, including network protocol process-
ing and application processing, to be fully performed on
a single core. This increases cache locality, ensuring
fast execution, and minimizes memory interconnect traf-
fic, improving scalability. Hence, performant network
stacks depend on a NIC configured to deliver packets to
the queue handled by the core the receiving application
resides.

2.2.2 Queue allocation in the driver

The shortcomings of RSS can be addresses by using more
flexible NIC filters, and trying to intelligently allocate
queues to flows using a policy baked into the device driver.

An example of this approach is Application Targeted
Receive (ATR) [12] (also called “Twenty-Policy” in [20]).
This is used by the Linux driver for the Intel i82599,
where, transparently to the rest of the OS, the device
driver samples transmitted packets (at a rate of 1:20 by
default) to determine the core on which the application
sending packets for a particular flow resides. Based on
the samples, the driver then configures the NIC hardware
to steer received packets to a queue serviced by that core.

The high-level problem with driver-based approaches is
that the NIC driver lacks a global system view (available
network flows, current OS policy, etc.) to make good
decisions. Instead of using the full information, it will use
heuristics based on hard-coded policies that may create
more problems than they actually solve.

2.2.3 Queue allocation in contemporary stacks

In some cases, solutions for specific NIC queue manage-
ment problems have been addressed in the network stack.

For example, Receive Flow Steering (RFS) [8] in the
Linux kernel tries to address the poor locality of RSS and
steer packets to cores on which the receiving application
resides. When using RFS, the network stack keeps track
of which core a particular flow was processed on (on calls
to recvmsg() and sendmsg()), and tries to steer packets
to the queue assigned to that core. RFS without accelera-
tion, performs the steering in software, where Accelerated
RFS uses NIC filters. In the latter case, drivers need to
implement the ndo_rx_flow_steer() function, used by
the stack communicate the desired hardware queue for
packets matching a particular flow. The driver is required
to poll the stack for expired flows in order to remove

3

stale filters. Currently, three NIC drivers (for Solarflare,
Mellanox, and Cisco silicon) implement this function.

Another example is Affinity-Accept [20], that aims to
improve locality for TCP connections. The incoming
flows are partitioned into 4096 flow groups by hashing
the low 12 bits of the source port, and each group is
mapped to a different DMA queue, handled by a different
core. The system periodically checks for imbalances and
reprograms the NIC by remapping flow groups to different
DMA queues (and hence cores).

Both of these methods are not without problems. Ac-
celerated RFS operates on a very simplified view of NIC
hardware. As a result, it cannot deal with the physical
limits of the NIC (e.g., what happens when the NIC’s
filter table is full?), and at the same time cannot exploit
all NIC hardware features. Affinity-Accept NIC queue
management, on the other hand, targets a single NIC (the
i82599), and cannot be applied to NICs that do not pro-
vide the ability to distribute flows based on the low 12
bits of the source port (e.g., Solarflare’s SFC9020).

Perhaps more importantly, both of these techniques
specifically target connection locality in a scenario in
which all network flows are equal. It is not possible, for
example, to utilize NIC queues to provide performance
isolation to specific network flows.

2.2.4 Dataplane OSes

Recently, so-called “dataplane OSes” such as Arrakis [21]
and IX [1] have proposed radically simplifying the design
of the shared OS network stack. In particular, these sys-
tems attempt to remove the OS completely from the data
path of packets. This is achieved using multiple queues,
and adopting a hard allocation of queues to applications.

We believe that this structure will be increasingly com-
pelling for high-performance server OSes in the future.
For this reason, we orient our work in this paper more
towards such dataplane-based OSes.

The adoption of dataplane-based designs, however, em-
phasizes the problem of intelligent queue allocation. For
example, Arrakis [21] specifies a hardware model for
virtualized network I/O, called virtual network interface
cards (VNICs). VNICs are expected to multiplex and
demultiplex packets based on complex predicate expres-
sions (filters). In contrast to traditional network stacks,
the application is assumed to have direct access to the
NIC DMA ring and establishing the proper filters (both
on the send and the receive path) is not just a performance
concern, but the mechanism for establishing protection
across applications running on the system.

Real NICs, however, are not perfect: they have limited
numbers of queues, limited numbers of filters, limited
filtering expressiveness, and, as we touched on in §2.1.1,
complex configuration spaces. Hence, in the context of

a dataplane OS the network stack is required to program
NIC filters based on application requirements and global
policies (e.g., which applications should operate without
direct hardware access due to limited NIC capabilities).

2.3 Discussion
Overall, we believe that the OS should be capable of deal-
ing with network queues analogously to how it deals with
cores and memory, since ignoring NIC queues can lead
to problems. In an OS like Linux, for example, it is not
possible to ensure performance isolation for applications
that use the network without exclusively allocating one
or more NIC queues to the application. In OS dataplanes,
the problem becomes more extreme because protection
(e.g., from applications spoofing headers) is achieved by
exclusive queue assignment.

Furthermore, as services are consolidated, a single ma-
chine is expected to deal with complicated, diverse, and
varying workloads, potentially served by multiple appli-
cations with different requirements. The OS, therefore,
should be able to dynamically assign hardware resources
such as cores, memory, and NIC hardware queues to ap-
plications to fulfil these requirements.

While well known techniques exist for allocating cores
and memory to applications, allocating NIC queues poses
a significant challenge. For sending packets this is not
a difficult task: the OS can just ensure that the queue is
used exclusively by a single application. For receiving
packets, however, allocating a queue requires ensuring
that particular network flows are steered into a specific
queue by the NIC. Different NICs offer different facilities
for steering packets into queues, making queue allocation
a non-trivial task. One way to perform this task, and how
it is done in many cases in practice, is to manually select a
static NIC configuration for a specific workload (e.g., via
ethtool [6] for Linux). This leads to reduced flexibility in
deployment and overcommitment of hardware resources.

In this paper, we argue that NICs should be config-
ured by the core OS network stack based on the network
state and given NIC-agnostic policies about how different
network flows share resources. Moreover, this function-
ality should neither be hidden behind the device driver
interface, nor left up to manual configuration.

Dragonet, our prototype network stack that realizes our
ideas, is driven by dataplane OSes as a primary use case,
but we argue that NIC queue management is a problem
common to both dataplane OSes and monolithic kernels,
and the techniques we present are applicable to both.

3 Managing queues in Dragonet

Dragonet operates on three abstractions: the network
stack state, a NIC representation, and a system policy.

4

We model the first two as dataflow graphs using a com-
mon model [25], and express policies via cost functions.

The Dragonet network stack model, called Logical Pro-
tocol Graph (LPG), includes both static parts of protocol
processing (e.g., checksum computation), but also dy-
namic network state (e.g., network flows as they come
and go). The latter is build by applications interacting
with the network. Applications operate on Dragonet via
an API similar to traditional sockets. A server application,
for example, calls the Dragonet variant of listen() and
waits for incoming requests to serve. Such a call modifies
the LPG by adding graph nodes to forward the appropriate
network packets to the application.

An important design goal of Dragonet is to decouple
policy specification from the NIC details. To do this we:
(i) build NIC models that fully describe hardware opera-
tion and configuration, and (ii) describe queue allocation
policies in a NIC-agnostic manner. To our knowledge,
no other network stack supports this functionality. Our
NIC models are called Physical Resource Graphs (PRGs)
and are expressed in the Unicorn domain specific lan-
guage [25]. We discuss them in detail in §3.1.

Dragonet configures NIC queues based on a system
policy. A policy might, for example, safely enable direct
queue assignment to applications by enforcing that only
packets destined for these applications are steered into
the queue. Furthermore, policies might also be concerned
with performance: achieving load balancing or enforcing
performance isolation for specific network flows.

We express user policies via cost functions (§3.4) that
assign a cost to a specific queue allocation, given the set
of active system flows in the system. Users can select an
existing cost function, or provide their own. Writing a
cost function does not require any knowledge about the
NIC. Furthermore, cost functions can be composed to
form complex policies. A system-wide cost function, for
example, can split the cost in two parts: one representing
the global queue allocation policy, and one representing
the application policy. The latter can be determined by
calling an application-specific cost function.

Using a PRG and a cost-function, Dragonet searches
the NIC’s configuration space for a configuration that min-
imizes the cost function. The configuration space is quite
large, rendering naive search strategies impractical. As a
result, Dragonet applies several techniques to efficiently
search the configuration space (§3.2).

From the perspective of the search algorithm, the cost
function is applied to a set of flows and a configuration for
a PRG (that models the NIC). From the perspective of the
policy writer, the cost function is applied to information
about how system flows are mapped into queues. We
translate between these two cost functions by computing
how flows are mapped into queues (§3.3).

3.1 Modeling NICs

The PRG models two aspects of a NIC: its configuration
and its hardware capabilities. Broadly speaking, a PRG
describes what are the possible configurations for the NIC
via a set of configuration variables, and how different
values for these variables affect the behavior of the NIC.

Configuration values range from boolean values rep-
resenting NIC hardware registers that can turn particular
NIC features on and off, to queue steering tables. Such a
table might contain multiple filter entries, each with mul-
tiple fields, such as a 5-tuple identifying a flow, a queue
id, and a priority for applying the filter.

Applying values to configuration variables refines the
graph. A configured PRG (i.e., one with no unassigned
configuration variables) fully describes how the NIC op-
erates: what happens when a packet arrives to the NIC
from the wire, and what happens when a packet is queued
for transmission by software. The PRG models the NIC
not necessarily in terms of how the hardware is built, but
rather on how it operates on network packets.

Essentially, PRGs provide a description of the NIC se-
mantics to the network stack. Focusing on NIC queues, a
configured PRG describes what are the available receive
and send queues, how packets are steered into the receive
DMA queues, and how packets are processed on the trans-
mit DMA queues. An example PRG is shown in Fig. 1.
We discuss it in detail next.

We build our graph-based models for NICs (but also for
the network stack) using three node types: Function nodes
(F-nodes), Operator nodes (O-nodes), and Configuration
nodes (C-nodes).

F-nodes are processing nodes. Each F-node has a sin-
gle input edge and multiple output edges organized in
ports. An F-node processes input data and enables a
single output port. Enabling an output port results in
enabling the nodes pointed to by the edges of the port.
Enabled nodes are executed until a sink node (i.e., a node
without out edges) is reached, at which point the packet
processing is completed.

O-nodes are used to combine outputs from multiple
nodes, and each corresponds to a logical operator (OR, AND,
etc.). Because O-nodes have multiple incoming edges,
they cannot be implemented as F-nodes. The nodes that
have ingress edges to an O-node are called its operands.
Each operand connects two output ports to the O-node:
one corresponding to a true and one to a false value. To
simplify our figures, we sometimes omit operand edges.
O-nodes activate one of their output ports (T for true and F
for false) based on the usual semantics of logic operators.

Fig. 1a shows an example of the receive side of a con-
figured PRG. The example is a simplified version of the
Intel i82599 PRG. F-nodes have white background, while
O-nodes have gray. The Q1, Q2, Q3 nodes represent the

5

RxIN p 5T(UDP,*,*,*,1053)
T

F

Q0 out
OR:Q0

T

F

Q1 out
OR:Q1

T

F

Q2 outOR:Q2
T

F5T(UDP,*,*,*,67)
T

F

5T(UDP,*,*,*,53)
T

F

(a) Configured PRG

RxIN p RxC5TupleFilter
queues

default
OR:Q0

T

F

OR:Q1
T

F

OR:Q2
T

F

Q0 out

Q1 out

Q2 out

(b) Unconfigured PRG

RxIN p 5T(UDP,*,*,*,1053)
T

F

Q0 out
OR:Q0

T

F

Q1 out
OR:Q1

T

F

Q2 out
OR:Q2

T

FRxC5TupleFilter
queues

default

(c) Partially configured PRG

Figure 1: Example PRG graph, based on the Intel i82599 NIC.

receive queues of the NIC. 5T nodes represent 5-tuple fil-
ters of the i82599. A 5-tuple consists of the protocol, the
source/destination IP address, and the source/destination
port. In this example, the 5-tuple filters only specify the
protocol and the destination port, leaving the other fields
masked so that they match everything. The example PRG
models a NIC where UDP packets with destination ports
53 and 1053 are steered to Q1, UDP packets with destina-
tion port 67 are steered to Q2, while all other packets end
up in the default queue, Q0.

Dragonet uses boolean logic for reasoning. Each F-
node port is annotated with a boolean predicate which
describes the properties of the packets that will en-
able the port. Our expressions are build with atoms
that are tuples of a label and a value. The la-
bel typically corresponds to a packet field. For ex-
ample the predicate for the true (T) port of filter
node ‘5T(UDP,*,*,*,53)’ is: ‘(EtherType,IPv4) AND
(IPv4Prot,UDP) AND (UDPDstPort,53)’. Note that it
is not possible to have a different value for the same
label. Hence, we can simplify expressions such as
‘(UDPDstPort,53) AND (UDPDstPort,67)’ to false.

C-nodes represent the configuration space of the NIC.
Each C-node corresponds to a configuration variable. It
specifies the set of possible values, and how applying a
value affects the graph. Applying a configuration value
to a C-node results in a set of new nodes and edges that
replace the C-node in the graph.

In the example of Fig. 1b, the RxC5TupleFilter
C-node is configured with a list of values, each de-
fined by a 5-tuple filter and a queue id. Applying:
[5T(UDP,*,*,*,1053) → Q1, 5T(UDP,*,*,*,67) → Q2,
5T(UDP,*,*,*,53) → Q1] in RxC5TupleFilter, for ex-
ample, results in the configured graph shown in Fig. 1a.

Each C-node defines how the graph is modified by
adding new nodes or edges, based on a configuration

value. If we allow each C-node to modify the PRG in
arbitrary ways (i.e., add edges and nodes everywhere
in the graph), reasoning about configuration becomes
challenging, especially when multiple C-nodes exist in the
graph. To avoid this, we constrain C-node modifications
to be local in the area defined by the C-node.

Specifically, all new edges added by a C-node must
have a source node which is either a new node, or a node
x for which an edge exists from x to the C-node in the
unconfigured graph. Analogously, all new edges must
have a destination node which is either a new node, or
a node x for which an edge exists from the C-node to
x in the unconfigured graph. Under this restriction, the
changes that a configuration node can apply to the graph
are restrained to the nodes that it is connected with.

In our example (Figures 1a and 1b), configuring
RxC5TupleFilter adds 3 5T nodes. Hence, for all new
edges the source node can either be the RxIN (since there
is a RxIN→ RxC5TupleFilter edge in the unconfigured
graph) node, or a 5T node. Similarly, the destination node
can either be one of the OR:Qx nodes, or a 5T node. This
restriction allows us to maintain predicate information
when incrementally configuring the PRG (see §3.3).

3.2 Searching the PRG configuration space

Dragonet operates by searching the PRG configuration
space for a configuration that minimizes the cost func-
tion. From the perspective of the search algorithm, a cost
function (for a particular PRG) evaluates a configuration
given a set of active flows. In contrast, the cost function
that defines the policy accepts how flows are mapped into
queues as input. Next, we discuss the search algorithm,
and in subsequent sections (§3.3 and §3.4) we discuss
computing the flow-to-queue mapping and expressing
policies as cost functions.

6

3.2.1 Network flows

We define a flow as a predicate on a network packet.
For example, a listening UDP socket defines the class
of packets that will reach the socket. Similarly, a TCP
connection defines the class of packets that are a part of
this connection. It is worth noting that, even though UDP
is connectionless, we can still define a UDP flow as the
class of packets that have specific source and destination
UDP endpoints (IP/port).

Determining active flows, however, is not trivial. Even
for connection-oriented protocols like TCP the fact that
the connection exists, does not mean that the connection
is active (i.e., packet exchange might be minimal). Active
network flows can be identified based on a traffic monitor
mechanism, or registered directly by the application. In
our current prototype, we use the latter approach (via a
proper API), but we also plan to add support for the traffic
monitoring in future versions.

If more fine-grained metrics than individual flows are
needed (e.g., considering the traffic rate of each active
network flow, rather than just whether it is active or not),
our queue management algorithms can be easily adapted
accordingly.

3.2.2 PRG oracles

A first observation is that a comprehensive search of
the configuration space would require an unreasonable
amount of time. For example, in many cases queue fil-
ters include IP addresses or ports in their configuration
(e.g., 5-tuple filters). Considering all possible values for
these fields is unrealistic. We can prune a large part of
the search space, however, if we filter values for these
fields based on the active flows. For example, if a field of
a configuration value corresponds to a source IP address,
we only consider source IP addresses that appear on the
current network flows.

To further reduce the search space, we use NIC-specific
configuration space iterators we call oracles. An oracle
allows injecting NIC-specific knowledge into the search
by, for example, eliminating symmetric configurations,
or prioritizing specific configurations over others. An
oracle accepts the current PRG configuration and a flow,
and returns a set of incremental changes to the given
configuration.

Our oracle implementations for the Intel i82599 and
Solarflare SFC9020 NICs generate configurations that
map the given flow to different queues by adding appro-
priate filters. We also apply some basic NIC-specific
optimizations. For example, the i82599 oracle will only
use flow director filters if all the 5-tuple filters are used
(see §2.1.1).

Algorithm 1: Search algorithm sketch
Input :The set of active flows Fall
Input :A cost function cost
Output :A configuration c
c←C0 // start with an empty configuration
F ← /0 // flows already considered
foreach f in Fall do
// Get a set of configuration changes
// for f that incrementally change c
CC f ← oracleGetConfChanges(c, f)
F ← F + f // Add f to F
find cc ∈CC f that minimizes cost(PRG, c+ cc, F)
c← c+ cc // Apply change to configuration

3.2.3 Search algorithm

We use a greedy search algorithm, which starts with an
empty configuration and accepts a set of flows and a cost
function as input. We opted for a greedy strategy due to
its simplicity and because it can be applied incrementally
as new flows arrive (see §3.2.4).

A simplified version of our search is shown in Alg. 1, in
which each step operates on a single flow (f) and refines
the configuration from the previous step (c). At each step,
we invoke the oracle to acquire a new set of configuration
changes (CC f) that incrementally modify the previous
configuration. A configuration change can be applied to
a configuration to form a new configuration (cc+ c). We
select the configuration change that minimizes the cost
for the current set of flows (F), update the configuration
and continue until there are no more flows to consider.

Depending on the problem, a greedy search strategy
might not be able to reach a satisfactory solution. To
deal with this issue, we allow cost functions to return
whether the solution is acceptable or not in their cost
value. An acceptable solution always has a lower cost
than a unacceptable solution. If after the greedy search
the algorithm is not able to reach an acceptable solution,
the algorithm “jumps” to a different location of the search
space and starts again by rearranging the order of the
flows. To avoid jumps, we support a heuristic where
cost functions are paired with a function to sort the flows
before the search algorithm is executed.

3.2.4 Incremental search

The above algorithm operates on all the active flows. As
flows come and go in the system, we need to consider
that the optimal configuration might change. A naive
solution for dealing with added/removed flows would
be discard all state and redo the search. This, however,
induces significant overhead and does not scale well as
the number of flows increase. Next, we discuss how we
deal with flow arrival and removal incrementally.

7

Adding flows is simple in the greedy search algorithm:
we start from the current state and perform the necessary
number of iterations to add the new flows. If an acceptable
solution is not reached, we rearrange the flows (applying
the sorting function if one is given) and redo the search.

Removing flows is more complicated to deal with. One
approach would be to backtrack to a search state that does
not include any removed flows, and incrementally add the
remaining flows in the system. Because this can lead to
large delays, we remove flows lazily instead.

As can be seen in Alg. 1, each flow is associated with a
configuration change. When this change is applied to the
PRG, a new set of nodes are added to the graph. When a
flow exits the system, we maintain the configuration as is,
and mark the configuration change that was paired with
the removed flow as stale. This results in the nodes added
by the configuration change to remain in the PRG, even
though the corresponding flow was removed.

At some point, we need to remove the stale configu-
ration changes. To do that we can backtrack the search
as mentioned above. As an optimization, we allow or-
acles to repurpose the graph nodes that are associated
with stale configuration changes when new configurations
are needed. To that support this, we define special con-
figuration changes called replacements. In our current
prototype, replacements are implemented by changing
the predicates of the generated nodes for the replaced
configuration change, but not the graph structure.

3.2.5 Executing the search

There are two main components in Dragonet, executed
as different threads: the control thread, and the protocol
threads (one thread per NIC queue). The protocol threads
implement the network protocols (they effectively execute
the LPG), passing packets from the NIC to applications
and vice-versa. The control thread is responsible for
executing the search. It accepts notifications about new
or deleted active flows, and maintains state about the
registered applications and their endpoints (sockets), the
current active flows, and the NIC configuration. Once the
search is completed, the controller passes the resulting
configuration to the NIC driver which configures the NIC.

An important aspect is the granularity that the search
is performed. Performing a new search for each added
or removed flow is possible, but potentially excessive.
There are several factors on which the granularity selec-
tion depends on: the overhead of the search, the rate of
changes in flows, the importance of quickly reacting to
changes, and requirements for precision in the search
result. Overall, there is no single perfect way to solve
this issue, since it is highly application dependant. In
our current prototype, we leave it up to the application to
trigger the search. Applications can be throttled on the

frequency they request a search using a token-based or
similar algorithm.

All new flows are assigned to the default queue. Hence,
creating a new connection does not depend on executing
the search. The new flows will be serviced by the default
queue until the next search concludes, at which point they
might be assigned to new queues.

3.3 Mapping flows into queues
Policy cost functions accept how active flows are mapped
into NIC queues (flow mapping) as an argument and return
a cost value. We can compute the flow mapping as follows.
First, we apply the change to the configuration and use it
to configure the PRG. Given a configured PRG, we can
determine the queue on which a flow will appear using
a flow predicate and a depth-first search starting from
the source node (e.g., RxIn in Fig. 1a). For each of the
flow’s activated nodes, we compute the port that will be
activated, and continue traversing the graph.

In F-nodes, we determine the activated port by check-
ing the satisfiability of the conjunctions formed by the
flow predicate and the port predicates. We assume that the
flow predicate contains enough information to determine
which port will be activated (i.e., for each flow predicate,
only one port predicate will be satisfiable). We had no is-
sues with this assumption. Although boolean satisfiability
is an NP-complete problem, in practice the flow and port
expressions contain a small number of terms for this to
become a restriction.

For O-nodes, we check the incoming edges and deter-
mine the activated port using the usual operator semantics.
For example, in an OR node the true (false) port is acti-
vated if the flow appears in the true (false) edge of one
(all) operand(s). Note that for each operand, the flow can
appear only in one edge (either true or false).

Computing the flow mapping dominates search exe-
cution time, and the method described above performs
redundant computations. To improve search performance,
we incrementally compute the flow mapping by main-
taining a partially configured PRG across search steps.
Applying a configuration value to a C-node results in the
C-node being removed. Applying a configuration change
to a C-node maintains the C-node and results in a partially
configured PRG.

An example of a configuration change is “insert a
5T(UDP,*,*,*,1053)→ Q1 filter”. Applying this change
to the graph of Fig. 1b results in the partially configured
PRG of Fig. 1c.

To incrementally compute the flow mapping, we main-
tain information about how active flows are mapped in
node ports in the partially configured graph. In Fig. 1c,
for example, we can compute what flows match the T port
of 5T(UDP,*,*,*,1053) (and will consequently reach Q1)

8

and what flows match the F port. Note that C-nodes act
as barriers, because we cannot compute flow mappings
beyond them.

When an incremental change is applied, we propagate
flow information to each newly inserted node. If the con-
figuration change is a replacement, we recompute flow
mappings for the affected nodes and propagate changes.
As we show in our evaluation (§4.4), incrementally com-
puting the flow mapping leads to a significant perfor-
mance improvement for the search algorithm.

3.4 Specifying policies with cost functions

Next, we discuss expressing queue allocation policies via
cost functions that operate on a mapping of flows onto
queues. In a deployment of our system, we expect that
there will be a number of available policies, as well as
an interface that allows system administrators to provide
their own. We examine two policies as examples.

First, load balancing aims to balance the flows to the
available queues. This policy is expressed easily using a
cost function: we compute the variance of the number of
flows in each queue.

Algorithm 2: Cost function for performance isolation
policy

Input :The available queues Qs and flows F
Input :K queues assigned to HP flows
Input :A function isHP() to determine if a flow is HP
Input :The flow mapping f map
Output :A cost value
// determine HP and BE flows
(FHP,FBE)← partition F with isHP() function
// determine queues for each flow class
QsHP ← the first K queues from Qs
QsBE ← the remaining queues after K are dropped from Qs
// are flows assigned to the proper queues?
OKHP←∀ f ∈ FHP : f map[f] ∈ QsHP
OKBE ←∀ f ∈ FBE : f map[f] ∈ QsBE
if (not OKHP) or (not OKBE) then

return CostReject 1
BHP← compute balancing cost of FHP on QsHP
BBE ← compute balancing cost of FBE on QsBE
if FHP is empty then

return CostAccept BBE
else if FBE is empty then

return CostAccept BHP
else return CostAccept BHP +BBE

Second, we consider a policy that offers performance
isolation for certain flows. We distinguish between two
classes of flows: high-priority (HP) and best-effort (BE)
flows. Following the dataplane model, each class is served
by an exclusive set of threads, each pinned on a system
core, each operating on a single DMA NIC queue. To

ensure the good behaviour of the HP flows we allocate
a number of queues to be used only by these flows, and
leave the rest of the queues for the BE flows. As a sec-
ondary goal, each class provides its own cost function
for how flows are to be distributed among the queues as-
signed to the class. This illustrates the composability of
cost functions, where each class may provide its own cost
function (in this example we use load balancing), while a
top-level cost function describes how queues are assigned
to classes.

The cost function for this policy is also simple. Its
implementation is about 20 lines of Haskell code, and its
pseudocode is shown in Alg. 2. It rejects all solutions that
assign flows to queues of different classes, and returns
an accepted solution with a score equal to the sum of the
balancing cost for each class.

In our experience, cost functions, although in many
cases small and conceptually simple, can be very tricky to
get right in practice. Operating on the Dragonet models,
however, considerably eased the development process
because we could experiment and build tests for our cost
functions without the need to execute the stack.

3.5 Implementation
Dragonet is written in Haskell and C.1 The Haskell code is
responsible for implementing the logic, while the C code
implements low-level facilities such as communication
with the NIC drivers and stack execution.

PRGs and LPGs are written in the Unicorn domain
specific language [25], which is embedded in Haskell.
Configuration functions for applying configuration values
to C-nodes are written in Haskell.

Dragonet runs in user-space, and spawns a control
thread and a number of protocol threads, each operat-
ing on a different receive/send queue pair. In each of
these queue pairs, Dragonet connects a separate instance
of the software stack implementation (i.e., the LPG). This
ensures that all processing of a single packet happens on
the same core. This allows to specialize the LPG imple-
mentation based on the properties of the NIC queue that
it is attached to. For example, if a queues is configured
so that no packets for a particular application endpoint
are received, we remove the relevant nodes for steering
packets in this endpoint from the LPG instance connected
to that queue.

The LPG is transformed from Haskell to a C data struc-
tured and sent from the controller thread to the protocol
threads. It is executed in the protocol threads by travers-
ing the graph and calling C functions that correspond
to F-node and O-node functionality. Our current pro-
totype supports UDP, IP, and ARP. All communication

1The Dragonet prototype source code is available in http://git.
barrelfish.org/?p=dragonet

9

http://git.barrelfish.org/?p=dragonet
http://git.barrelfish.org/?p=dragonet

Linux Onload ANet
0

200
400
600
800

1000
1200
1400
1600

M
ea

n
la

te
nc

y(
us

ec
s)

(a) Latency, 1024 bytes
Linux Onload ANet

0
10
20
30
40
50
60
70

TP
S(

kT
x/

se
c/

cl
ie

nt
)

(b) Throughput, 1024 bytes
Linux Onload ANet

0

200

400

600

800

1000

M
ea

n
la

te
nc

y(
us

ec
s)

(c) Latency, 64 bytes
Linux Onload ANet

0

10

20

30

40

50

TP
S(

kT
x/

se
c/

cl
ie

nt
)

(d) Throughput, 64 bytes

Figure 2: Comparision of echo server performance on the Solarflare SFC9020 NIC for different network stacks

between Dragonet threads and application threads is done
via shared-memory queues. More details can be found
in [15].

The Dragonet driver for each NIC needs to implement:
a PRG, its oracle, the shared memory queue for communi-
cation with Dragonet threads, and a function that accepts
a PRG configuration and configures the NIC. We have im-
plemented drivers for the Intel i82599 and the Solarflare
SFC9020 NICs. The first uses Intel DPDK [10], while
the second uses OpenOnload [27].

We are currently investigating several options for im-
plementing the necessary boolean predicate logic. The
implementation we describe here is based on a custom
solver that we developed in Haskell, and we have also
experimented with the Z3 SMT solver [4]. There is signif-
icant room for performance improvement in our current
boolean solver.

4 Evaluation

In this section we evaluate our system. We first investigate
if Dragonet has comparable performance to traditional
network stacks under similar NIC configurations (§4.2).
Next, we investigate the performance benefits of using
Dragonet smart queue allocation capabilities. We specifi-
cally examine the performance effect of enforcing perfor-
mance isolation for specific client flows in a memcached
server (§4.3). Finally, we quantify the search overhead for
Dragonet to find an appropriate NIC configuration (§4.4).

4.1 Setup

As a server, we use an Intel Ivy Bridge machine with 20
cores, running Linux (kernel version 3.13). The server
is equipped with an Intel i82599 [11] and a Solarflare
SFC9020 [28] NIC.

For load generators (clients), we use different multicore
x86 machines (with the same software as the server) using
an Intel i82599 [11] NIC to connect to the server over a
10GbE network. We always use the same allocation for
client threads in the load generators to reduce the variance
of the applied workload for each run.

Dragonet runs in its own process context (separate
from applications) in user-space using one thread per
NIC queue (for polling NIC receive queues and applica-
tion send queues), and one controller thread that runs the
solver. We allocate 10 cores to the 11 Dragonet stack
threads (and subsequently 10 NIC queues), and 10 cores
to the server application. Although the protocol threads
are not required to have an exclusive core, we do this be-
cause our queue implementation used for communication
between the application and the protocol threads support
only polling and cannot block.

4.2 Basic performance comparison

To put Dragonet’s performance in perspective, we start
with a comparison to other network stacks. We do not
claim that Dragonet has the best performance. Our goal
is to show that Dragonet has reasonable performance
under the same conditions, and exclude the possibility
that the benefits of smart queue allocation are artifacts of
Dragonet’s poor performance. To that effect, we use a
load-balancing NIC queue allocation in which flows are
evenly distributed across queues policy for Dragonet and
RSS for the other stacks.

We use a UDP echo server with 10 threads, and gen-
erate load from 20 clients running on different cores on
4 machines. Each client runs a netperf [19] echo client,
configured to keep 16 packets in flight.

The results are shown in Fig. 2, in which we show
boxplots for mean latency and throughput as reported for
each of the 20 clients, using 64 and 1024 byte packets.
We compare Dragonet (Anet) against the Linux kernel
stack (version 3.13) (Linux) and the high-performance
Solarflare OpenOnload [22] network stack (Onload) using
the Solarflare SFC9020 NIC, which we configure for low-
latency. OpenOnload is a user-level network stack that
completely bypasses the OS in the data path and can be
transparently used by applications using the BSD sockets
system calls. We got similar results for the Intel NIC,
which we omit for brevity (no equivalent to OpenOnload
exists for the Intel NIC).

Linux network stack has the worst performance. For
example, for 1024 bytes we measured a median latency of

10

Bal Isolated +BE +HP
0

100

200

300

400

500

600
M

ea
n

la
te

nc
y(

us
ec

s)

(b) Latency, 1024 bytes
Bal Isolated +BE +HP

0
10
20
30
40
50
60
70
80

TP
S(

kT
x/

se
c/

cl
ie

nt
)

(c) Throughput, 1024 bytes
Bal Isolated +BE +HP

0

100

200

300

400

500

M
ea

n
la

te
nc

y(
us

ec
s)

(d) Latency, 64 bytes
Bal Isolated +BE +HP

0
10
20
30
40
50
60
70
80

TP
S(

kT
x/

se
c/

cl
ie

nt
)

(e) Throughput, 64 bytes

(e) Intel i82599 NIC

Bal Isolated +BE +HP
0

100

200

300

400

500

M
ea

n
la

te
nc

y(
us

ec
s)

(g) Latency, 1024 bytes
Bal Isolated +BE +HP

0
10
20
30
40
50
60
70
80
90

TP
S(

kT
x/

se
c/

cl
ie

nt
)

(h) Throughput, 1024 bytes
Bal Isolated +BE +HP

0

100

200

300

400

500

M
ea

n
la

te
nc

y(
us

ec
s)

(i) Latency, 64 bytes
Bal Isolated +BE +HP

0
10
20
30
40
50
60
70

TP
S(

kT
x/

se
c/

cl
ie

nt
)

(j) Throughput, 64 bytes

(j) Solarflare SFC9020 NIC

Figure 3: Evaluation of memcached using a priority cost function on Solarflare SFC9020 and Intel i82599 using 10 queues.

1.14 ms and a median throughput of 16.3K transactions/s
across clients. For Onload (Dragonet), we measured a me-
dian latency of 453 µs (366 µs), and a median throughput
of 36.6K (46.3K) transactions/s across all clients. The ag-
gregate throughput for Onload (Dragonet) is 803K (878K)
transactions/s, and the aggregate transfer rate is 6.6 (7.2)
Gbit/s.

Onload and Dragonet perform significantly better than
Linux mainly due to bypassing the OS in the data path.
Dragonet and Onload have similar performance. For 1024
byte requests, Dragonet outperforms Onload, while the
reverse is true for 64 byte requests.

4.3 Performance isolation for memcached

In this section we evaluate the benefits of smart NIC queue
allocation using a (ported to Dragonet) UDP memcached
server as an example of a real application. We consider
a scenario in which a multi-threaded memcached serves
multiple clients (e.g., web servers) and we want to priori-
tize requests from a subset of the clients that we consider
high-priority (HP clients). We use the performance isola-
tion cost function described in §3.4 to allocate 4 out of 10
NIC queues exclusively to HP clients. The thread on the
default queue (queue 0) maintains a hash table to detect
new flows and inform Dragonet of their presence.

Our experiment is as follows: we start a multi-threaded
memcached server with 10 threads exclusively using 10
of the server’s cores. We apply a stable load from 2 HP
clients, and 18 best-effort (BE) clients, each with 16 flows,
resulting in a total of 320 flows. We generate the load
using memaslap, a load generation and benchmark tool
for memcached servers.

After 10 s we start a new BE client, which runs for 52 s.

After the BE client is finished we wait for 10 s and start a
new HP client, which also runs for 52 s. Each of the new
clients are added as new flows and a search is triggered
by the server. We collect aggregate statistics from each
client (mean latency and throughput), and show results
for 64 and 1024 byte server responses for both NICs in
Fig. 3. We use a 10/90% Set/Get operation mix.

Each plot includes: (i) the performance of the work-
load under a load-balancing policy (Bal) for reference,
(ii) the performance of the workload under the perfor-
mance isolation policy (Isolated), (iii) the performance
of the added BE client (+BE), and (iv) the performance
of the added HP client (+HP). For the performance isola-
tion policy, we use two different boxplots in our graphs:
one that aggregates the HP clients (green color, median
marked with triangles), and one that aggregates the BE
clients (blue color, median marked with circles). For the
load-balancing policy, we use one boxplot (black color,
median marked with ’x’) for all clients.

As an example, we consider the case of the Intel i82599
NIC for 1024 byte requests. Under a load-balancing pol-
icy, the median average latency across clients is 342 µs,
the median throughput is 46.6K transactions/s, and the
aggregate throughput is 927.5K transactions/s. Under the
performance isolation policy, HP clients achieve a median
latency of 246.5 µs (27% reduction compared to balanc-
ing) and a median throughput of 65.6K transactions/s
(41% improvement compared to balancing). Furthermore,
Newly added HP flows and BE flows maintain the same
level of performance as their corresponding classes in the
stable workload.

For all cases, Dragonet queue allocation allows HP
clients to maintain a significantly higher level of perfor-
mance via a NIC configuration that is the result of a NIC-

11

70 75 80 85 90
Time(sec)

100

200

300

400

500

600

700

Av
g(

us
)

Stable
(HP)

Stable
(BE) +HP

(b) Latency

70 75 80 85 90
Time(sec)

0

20

40

60

80

100

120

TP
S(

kT
x/

se
c/

cl
ie

nt
)

Stable
(HP)

Stable
(BE) +HP

(c) Throughput

(c) Intel i82599 NIC

70 75 80 85 90
Time(sec)

100

200

300

400

500

600

700

Av
g(

us
)

Stable
(HP)

Stable
(BE) +HP

(e) Latency

70 75 80 85 90
Time(sec)

0

20

40

60

80

100

TP
S(

kT
x/

se
c/

cl
ie

nt
)

Stable
(HP)

Stable
(BE) +HP

(f) Throughput

(f) Solarflare SFC9020 NIC

Figure 4: Impact of adding an HP client when using 64 byte requests

agnostic policy. To the best of our knowledge, no other
network stack enables this.

We also instruct memaslap clients to provide results
about latency and throughput every one second (the min-
imum possible value). Fig. 4 shows our results for 64
byte requests, focusing on adding an HP client. It shows
median throughput and latency for all clients in the initial
workload, and the individual throughput and latency mea-
surements for the new HP client. The initial latency of
the HP client is high (12.6 ms for i82599 and 4.5 ms for
SFC9020) and is omitted from the graphs for clarity. Dur-
ing the addition of the new client, all clients performance
drops for one second (sampling period), but it quickly
stabilizes again. We attribute these delays to the Dragonet
solver executing and contending with the rest Dragonet
threads, and the time it takes to pass the new LPG graph
to the protocol threads after a new configuration is found.
We believe that with careful engineering the majority of
these overheads can be eliminated. For example, in many
cases the LPG graph does not actually change across dif-
ferent configurations so it is not necessary to actually
reconstruct it in the protocol threads.

4.4 Search overhead

Here, we examine the search overhead, i.e., the time it
takes Dragonet to complete the search. For each possible
new configuration given by the oracle, Dragonet com-
putes how flows are mapped to queues (see §3.3), which
dominates the search cost. Table 1 shows the search cost
for a varying number of flows (ranging from 10 to 500)
when using 10 queues on the Intel i82599 PRG for the
balancing cost function. The Basic column shows the
cost of finding a solution without incrementally comput-
ing the flowmap. All results in subsequent columns use
incremental flowmap computation. They show the cost
for computing the solution from scratch (full), but also
the cost of incrementally adding (+1/+10 flows) and re-
moving flows (-1/-10 flows). For example, it takes 484 ms
to find a solution for 10 new flows added when the sys-

Basic Incremental flowmap computation
flows full full +1 fl. +10 fl. -1 fl. -10 fl.
10 11 ms 17 ms 2 ms 22 ms 9 µs 23.7 µs
100 1.2 s 0.6 s 9 ms 94 ms 74 µs 117 µs
250 13 s 4 s 21 ms 219 ms 190 µs 277 µs
500 76 s 17 s 43 ms 484 ms 382 µs 548 µs

Table 1: Search overhead for Intel i82599 PRG using 10 queues

tem has 500 flows. Because we apply a lazy approach,
removing flows has small overhead.

The biggest challenge of our approach is reducing the
search cost, which is not an easy problem. Our results
show that incrementally computing flow mappings, not
only allows to efficiently add and remove flows with small
overhead, but also significantly improves the full compu-
tation because information is kept across search steps.

4.5 Discussion

Overall, our evaluation shows that Dragonet offers signif-
icant benefits by automatically configuring NIC queues.
But, there is clearly a tradeoff: the search overhead. In
general, the number of flows and the rate of changes in
the workload determine the applicability of our approach.
Considering two extremes, our system is well-suited for
coarse-grained machine allocations in datacenters for ap-
plications whose execution spans minutes, but cannot deal
with load spikes in the order of a few miliseconds.

There are two aspects of the search overhead: con-
stants and scalability in the number of flows. In this paper,
we focused on the latter and showed that incrementally
computing the necessary information can significantly
alleviate the overhead. We believe that there is significant
room for improvement in both of these aspects. One one
hand, we use a basic search algorithm that can be signifi-
cantly improved. On the other hand, our profiling showed
that more than 10% of the search execution time goes to
basic operations (e.g., finding successors and predeces-
sors) in the functional graph library [5] we use. Moreover,

12

more than 10% of the time goes to predicate computation
done with our suboptimal library, even though we use
Haskel’s mutable hash tables [3, 17] to cache predicates.

5 Related work

Our techniques build on many areas of related work; we
structure this discussion around (i) high-performance
network stacks, (ii) network stacks organized as graphs,
and (iii) declarative techniques for dealing with hardware
complexity.

Scalable network stacks Recent work [7,14,20] has fo-
cused on improving the poor TCP performance for small
messages and short-lived connections. Unsurprisingly, all
of these works aim for good locality, i.e., ensuring that all
processing for a particular network flow happens on the
same core, which requires the use of NIC steering filters
to distribute packets among cores. Affinity-accept [20],
redesigns the Linux accept system call so it preferably
returns connections of flows processed in the same core
as the application, and provides short- and long-term load
balancing mechanisms. MegaPipe [7] is a based on a
redesigned API, and in addition to splitting up the accep-
tance of new connections among different cores, batches
multiple requests and their completion notifications in a
single system call to improve performance. mTCP [14]
applies similar techniques to a user-space network stack
that interacts with applications via a traditional socket
API. Taking a step further, “data plane OSes” [1, 21] pro-
pose fully removing the OS from the data path of packets.

Network stacks organized as graphs Structuring the
network stack as a graph is not a new idea. The x-
Kernel [9] aimed to provide a common set of abstrac-
tions for building network protocols without, however,
sacrificing performance compared to an ad-hoc imple-
mentation. Each protocol (e.g., IP, UDP, TCP) in the
x-Kernel is represented as an object. The organization of
the protocols is determined at kernel configuration time,
and each protocol is given the capability to invoke the
low-level protocols upon which it depends. Click’s [16]
defines a software architecture for building modular soft-
ware routers. A program in Click is a directed graph, build
out of nodes called elements. Each element implements
a specific computation in the software graph and has a
number of input and output ports.

Contrarily to these works, we target managing NIC
hardware rather than building good software abstractions.

Declarative techniques for dealing with hardware
complexity Dragonet is also inspired by systems apply-
ing declarative techniques for addressing hardware com-

plexity, particularly in the OS design space. For example,
the Barrelfish OS uses constraint logic programming to
deal with problems such as PCI configuration, multicast
messaging, and global resource management [23, 24]. In
another context, Merlin [29] provides a declarative lan-
guage for expressing high-level policies for managing
resources in software-defined networks.

6 Conclusion and Future Work

In this paper, motivated by the increasing importance of
exploiting NIC queues, we presented Dragonet, a network
stack that can effectively reason about and utilize NIC
hardware queues. Dragonet treats queue allocation as a
primary concern instead of hard-coding queue allocation
policy in the protocol implementation or in the NIC driver.

This leads to a radical network stack design. Dragonet
operates on a NIC hardware abstraction that represents
NICs as directed graphs. Using this abstraction, Dragonet
searches the NIC’s configuration space for optimal solu-
tions based on cost functions expressing policy require-
ments. We show the performance benefits of our approach
by implementing and evaluating a load-balancing and a
performance isolation policy.

As future work, we aim to further extend Dragonet to
deal with a wider range of problems. We aim to explore al-
ternative search strategies and experiment with additional
policies. We are specifically interested in investigating
the tradeoff between result precision and search overhead,
as well as applying advanced search techniques to explore
the configuration space (e.g., metaheuristics [2]).

Acknowledgements

We thank the Barrelfish team at ETH Zurich, the anony-
mous reviewers, and our shepherd, Gilles Muller, for their
feedback.

References

[1] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSS-
MAN, S., KOZYRAKIS, C., AND BUGNION, E.
IX: a protected dataplane operating system for high
throughput and low latency. In 11th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI 14) (Oct. 2014).

[2] BLUM, C., AND ROLI, A. Metaheuristics in com-
binatorial optimization: Overview and conceptual
comparison. ACM Comput. Surv. 35, 3 (Sept. 2003),
268–308.

[3] COLLINS, G. Hackage: The hashtables package.
https://hackage.haskell.org/package/hashtables.

13

[4] DE MOURA, L., AND BJØRNER, N. Z3: An effi-
cient SMT solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems (2008), TACAS’08/ETAPS’08,
pp. 337–340.

[5] ERWIG, M. Inductive graphs and functional graph
algorithms. J. Funct. Program. 11, 5 (Sept. 2001),
467–492.

[6] ethtool - utility for controlling network drivers
and hardware. https://www.kernel.org/pub/
software/network/ethtool/.

[7] HAN, S., MARSHALL, S., CHUN, B.-G., AND
RATNASAMY, S. MegaPipe: A new programming
interface for scalable network I/O. In Proceedings of
the 10th USENIX Conference on Operating Systems
Design and Implementation (Berkeley, CA, USA,
2012), OSDI’12, USENIX Association, pp. 135–
148.

[8] HERBERT, T., AND DE BRUIJN, W. Scal-
ing in the linux networking stack. https:
//www.kernel.org/doc/Documentation/
networking/scaling.txt, May 2013.

[9] HUTCHINSON, N. C., AND PETERSON, L. L. The
x-Kernel: An architecture for implementing network
protocols. IEEE Transactions on Software Engineer-
ing 17, 1 (January 1991).

[10] INTEL. Intel DPDK: Data Plane Development Kit.
http://www.dpdk.org/.

[11] INTEL CORPORATION. Intel 82599 10 GbE Con-
troller Datasheet, December 2010. Revision 2.6.

[12] INTEL CORPORATION. Intel 10 Gigabit Linux
driver. https://www.kernel.org/doc/
Documentation/networking/ixgbe.txt, Aug.
2013.

[13] JANG, H.-C., AND JIN, H.-W. Miami: Multi-core
aware processor affinity for TCP/IP over multiple
network interfaces. In Proceedings of the 2009 17th
IEEE Symposium on High Performance Intercon-
nects (Washington, DC, USA, 2009), HOTI ’09,
IEEE Computer Society, pp. 73–82.

[14] JEONG, E., WOOD, S., JAMSHED, M., JEONG,
H., IHM, S., HAN, D., AND PARK, K. mTCP: a
highly scalable user-level TCP stack for multicore
systems. In 11th USENIX Symposium on Networked
Systems Design and Implementation (Seattle, WA,
Apr. 2014), NSDI ’14, pp. 489–502.

[15] KAUFMANN, A. Efficiently executing the Drag-
onet network stack. Master’s thesis, ETH Zurich,
October 2014.

[16] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI,
J., AND KAASHOEK, M. F. The Click modular
router. ACM Transactions on Computer Systems 18,
3 (August 2000).

[17] LAUNCHBURY, J., AND PEYTON JONES, S. L.
Lazy functional state threads. SIGPLAN Not. 29, 6
(June 1994), 24–35.

[18] MICROSOFT CORPORATION. Scalable network-
ing. http://msdn.microsoft.com/en-us/
library/windows/hardware/ff570736%28v=
vs.85%29.aspx.

[19] netperf 2.6.0. http://www.netperf.org/
netperf/.

[20] PESTEREV, A., STRAUSS, J., ZELDOVICH, N.,
AND MORRIS, R. Improving network connection
locality on multicore systems. In Proceedings of
the 7th ACM European Conference on Computer
Systems (Eurosys) (2012).

[21] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K.,
WOOS, D., KRISHNAMURTHY, A., ANDERSON,
T., AND ROSCOE, T. Arrakis: The operating system
is the control plane. In 11th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 14) (Oct. 2014).

[22] POPE, S., AND RIDDOCH, D. Openon-
load: A user-level network stack.
http://www.openonload.org/openonload-google-
talk.pdf, 2008.

[23] SCHÜPBACH, A. Tackling OS Complexity with
Declarative Techniques. PhD thesis, ETH Zurich,
2012.

[24] SCHÜPBACH, A., BAUMANN, A., ROSCOE, T.,
AND PETER, S. A declarative language approach to
device configuration. In Proceedings of the Sixteenth
International Conference on Architectural Support
for Programming Languages and Operating Systems
(New York, NY, USA, 2011), ASPLOS XVI, ACM,
pp. 119–132.

[25] SHINDE, P., KAUFMANN, A., KOURTIS, K., AND
ROSCOE, T. Modeling NICs with Unicorn. In Pro-
ceedings of the Seventh Workshop on Programming
Languages and Operating Systems (2013), PLOS
’13, pp. 3:1–3:6.

14

https://www.kernel.org/pub/software/network/ethtool/
https://www.kernel.org/pub/software/network/ethtool/
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
http://www.dpdk.org/
https://www.kernel.org/doc/Documentation/networking/ixgbe.txt
https://www.kernel.org/doc/Documentation/networking/ixgbe.txt
http://msdn.microsoft.com/en-us/library/windows/hardware/ff570736%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff570736%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff570736%28v=vs.85%29.aspx
http://www.netperf.org/netperf/
http://www.netperf.org/netperf/

[26] SHINDE, P., KAUFMANN, A., ROSCOE, T., AND
KAESTLE, S. We need to talk about NICs. In 14th
Workshop on Hot Topics in Operating Systems (May
2013).

[27] SOLARFLARE COMMUNICATIONS, INC. Onload
User Guide. 9501 Jeronimo Road, Irvine, California
92618, 2010. Version 20101221.

[28] SOLARFLARE COMMUNICATIONS, INC. Solarflare
SFN5122F Dual-Port 10GbE Enterprise Server
Adapter, 2010.

[29] SOULÉ, R., BASU, S., MARANDI, P. J., PEDONE,
F., KLEINBERG, R., SIRER, E. G., AND FOSTER,
N. Merlin: A language for provisioning network
resources. In Proceedings of the 10th ACM Interna-
tional on Conference on emerging Networking Ex-
periments and Technologies (2014), ACM, pp. 213–
226.

15

	Introduction
	Motivation and Background
	Network hardware
	Configuring queue filters in modern NICs

	System software
	RSS: Queue allocation in the NIC
	Queue allocation in the driver
	Queue allocation in contemporary stacks
	Dataplane OSes

	Discussion

	Managing queues in Dragonet
	Modeling NICs
	Searching the PRG configuration space
	Network flows
	PRG oracles
	Search algorithm
	Incremental search
	Executing the search

	Mapping flows into queues
	Specifying policies with cost functions
	Implementation

	Evaluation
	Setup
	Basic performance comparison
	Performance isolation for memcached
	Search overhead
	Discussion

	Related work
	Conclusion and Future Work

